terclim by ICS banner
IVES 9 IVES Conference Series 9 OIV 9 OIV 2024 9 Short communications - Oenology, methods of analysis 9 Evaluation of uhph treatment as an alternative to heat treatment prior to the use of proteolytic enzymes on must to achieve protein stability in wine

Evaluation of uhph treatment as an alternative to heat treatment prior to the use of proteolytic enzymes on must to achieve protein stability in wine

Abstract

There are currently enzyme preparations on the market with specific protease activities capable of degrading unstable must proteins and preventing turbidity in white and rosé wines. The main drawback is the need to heat the must at 75ºc for 1-2 minutes to denature the proteins and facilitate enzyme action. The aim of this study is to test whether ultra high pressure homogenisation (uhph) of the must is able to cause the proteins to lose their upper structures and unfold, and thus replace this heat treatment. A white must of the verdejo variety was treated by uhph at 300 mpa and the same must unprocessed by uhph (control must) was included in the study. Different combined treatments (uhph/no uhph, enzyme/no enzyme, tª+enzyme/no tª+enzyme) were programmed with the aim of creating different scenarios to identify the best solution to avoid protein haze and enhance the sensory properties of the wine. All treatments were evaluated in triplicate. In addition to physico-chemical characterisation of the starting must (colour, ipt, ph, fermentable sugars, nfa), wine turbidity, colour, ipt, ph, alcohol content, volatile profile and a protein stability test were analysed to check the effectiveness of the treatments. The results show that uhph treatment is a good alternative to heat treatment of the must when protein haze is to be avoided by using proteolytic enzymes, and without negative sensory impact on wine.

Evaluación del tratamiento uhph como alternativa al tratamiento térmico previo al empleo de enzimas proteolíticas sobre el mosto para lograr la estabilidad proteica del vino

Actualmente existen en el mercado preparados enzimáticos con actividades proteasas específicas capaces de degradar las proteínas inestables del mosto y prevenir el enturbiamiento de vinos blancos y rosados. El principal inconveniente es la necesidad de calentar el mosto a 75ºc durante 1-2 minutos para desnaturalizar las proteínas y facilitar la actuación de las enzimas. El objetivo de este estudio es comprobar si la homogeneización por ultra altas presiones (uhph) del mosto es capaz de provocar que las proteínas pierdan sus estructuras superiores y se desplieguen, y de este modo reemplazar dicho tratamiento térmico. Se trató un mosto blanco de la variedad verdejo por uhph a 300 mpa y se incluyó en el estudio el mismo mosto sin procesar por uhph (mosto control). Se programaron distintos tratamientos combinados entre sí (uhph/no uhph, enzima/no enzima, tª+enzima/no tª+enzima) con el objetivo de crear distintos escenarios que permitieran identificar la mejor solución para evitar las quiebras proteicas y potenciar las propiedades sensoriales del vino. Todos los tratamientos se evaluaron por triplicado. Además de caracterizar físico-químicamente el mosto de partida (color, ipt, ph, azúcares fermentiscibles, nfa), se analizó la turbidez del vino, el color, el ipt, el ph, el grado alcohólico, el perfil de volátiles y se llevó a cabo un test de estabilidad proteica para comprobar la efectividad de los tratamientos. Los resultados demuestran que el tratamiento por uhph es una buena alternativa al tratamiento térmico del mosto cuando se pretenden evitar las quiebras proteicas empleando enzimas proteolíticas, y sin repercusión negativa a nivel sensorial.

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

Iris Loira¹, James Walsh¹, Carlos Escott², Juan Manuel del Fresno³, María Antonia Bañuelos⁴, Carmen González³, Antonio Morata³

¹ Dept. Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, Avd. Puerta de Hierro, 2, Madrid, Spain
² Dept. Galenic Pharmacy and Food Technology, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
³ EnotecUPM, Dept. Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, Avd. Puerta de Hierro, 2, Madrid, Spain
⁴ EnotecUPM, Dept. Biotechnology, ETSIAAB, Universidad Politécnica de Madrid, Avd. Puerta de Hierro, 2, Madrid, Spain

Contact the author*

Tags

IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

Viticultura protegida: uso de mallas sombreadoras fotoselectivas como una herramienta para enfrentar la crisis climática en uva de mesa en el norte de Chile

The production of table grapes in Chile is of great importance, being one of the main established fruit crops with over 43,000 hectares distributed across a diverse climate range, from the southern limit of the Atacama desert to the mediterranean zone. Chile is also one of the leading exporters of table grapes. producers must confront the challenges posed by the climate crisis, such as decreased rainfall, increased heatwaves, and extreme temperature events during the growing season, mainly associated with desertification in northern Chile (Atacama and Coquimbo regions).

Influence of soil management and vine water regime on leaf gas exchange, berry composition and quality of Chasselas wines in Switzerland

A soil management and vine irrigation trial was carried out for 4 consecutive years from 2020 to 2023 at agroscope’s experimental vineyard in leytron (Valais, Switzerland) with the Chasselas grape variety (clone 14-33/4, grafted on 5bb). Two types of soil maintenance (bare soil with chemical weeding and sown grass) coupled with two water regimes (with and without drip irrigation from flowering to veraison) were compared in a randomized design with four replicates of 10 vines each.

Climats: a model of terroir-based winegrowing recognized by UNESCO

In Burgundy, a climat has nothing to do with the weather but accurately designates a named vine plot, often centuries-old, which produces a singular wine. This wine is the combination of history, the natural environment (relief, type of soil, exposure to the sun), a grape variety and know-how going back thousands of years. The grapes of each climat are harvested separately and the wine is made from a single grape variety and has a unique name featured on the bottle. Romanée conti, clos de vougeot, montrachet, musigny, corton…