Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Ancient zoning in the world (T2010) 9 Utilisation de données historiques pour caractériser le millésime en cours

Utilisation de données historiques pour caractériser le millésime en cours

Abstract

Cet article propose la formalisation d’un modèle paramétrique pour représenter l’accumulation des sucres dans les baies de raisin durant la maturation. Le test de ce modèle sur des jeux de données réels a permis de valider l’approche proposée. Une seconde partie est axée sur l’adaptation de la méthode pour permettre la simulation du comportement du millésime en cours dès les premiers relevés de maturité. Ce travail possède de multiples applications dans le domaine de l’aide à la décision. English version: This paper proposes the formalization of a parametrical model in order to represent sugar accumulation in grape berries during ripening. The model was tested on real data and provides results that enable the validation of the proposed approach. The second part is based on the method accommodation to simulate the behavior of the current vintage as soon as the first maturity measurements are available. This work could have several applications in the decision support field.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2010

Type: Article

Authors

Dupin Séverine (1), Tisseyre Bruno (2) , Roger Jean-Michel (1), Gobrecht Alexia (1)

(1) Joint Research Unit ITAP, Cemagref Montpellier, 361 rue Jean-François Breton – BP5095, 34196 Montpellier
cedex 05, France
(2) Joint Research Unit ITAP, Montpellier SupAgro, Batiment 21, 2 place Viala, 34060 Montpellier, France

Keywords

Grape ripening – Modelling – Simulation – Decision support

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.

Iso-/anisohydric behavior in wine grapes may be a matter of soil moisture

There are claims that wine grape cultivars are either isohydric or anisohydric; the former maintaining, and the latter decreasing, their plant water status as soil moisture declines. However, available information is inconsistent. There are those that show an existence of a continuum in cultivar response to soil moisture rather than a distinct categorization. Others even show both behaviors in the same cultivar grown in different environments. In this study we investigated the behavior of 30 own rooted Vitis vinifera cultivars during successive drydown and rewatering cycles over two growing seasons in arid eastern Washington (<200 mm annual precipitation).

EXPLORING RED WINE TYPICITY OF CORBIÈRES: EVALUATION OF THE DEGREE OF IMPACT OF VINIFICATION PROCESS ON THE CHEMICAL COMPOSITION AND ORGANOLEPTIC PROPERTIES OF WINES FROM DIFFERENT TERROIR

It is important nowadays for wine producers to create a product that is an expression of their terroir, a concept including the interaction between a place (topography, climate, soil), the people (tradition, winemaking and viticultural practices) and the resulting product (grape varieties, wines) [1]. Nonetheless, wine’s typicity linked to those terroirs must be easily recognizable by consumers thanks to distinctive sensory characters and composition [2]. Among the compounds of interest, aromatic compounds and polyphenols play an important role in the quality of red wines, by impacting on the odour, color and astringency. To explore the influence of terroir factors, including climate, soil and human practices, on the chemical and sensory profile of wines, red wines from five terroirs of the Corbières appellation were subjected to a general study approach.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Saccharomyces uvarum has interesting properties that can be exploited for the production of fermented beverages. Particularly, the cryotolerance and capacity to produce high amounts of volatile compounds offers new opportunities for the wine industry.