Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Ancient zoning in the world (T2010) 9 Utilisation de données historiques pour caractériser le millésime en cours

Utilisation de données historiques pour caractériser le millésime en cours

Abstract

Cet article propose la formalisation d’un modèle paramétrique pour représenter l’accumulation des sucres dans les baies de raisin durant la maturation. Le test de ce modèle sur des jeux de données réels a permis de valider l’approche proposée. Une seconde partie est axée sur l’adaptation de la méthode pour permettre la simulation du comportement du millésime en cours dès les premiers relevés de maturité. Ce travail possède de multiples applications dans le domaine de l’aide à la décision. English version: This paper proposes the formalization of a parametrical model in order to represent sugar accumulation in grape berries during ripening. The model was tested on real data and provides results that enable the validation of the proposed approach. The second part is based on the method accommodation to simulate the behavior of the current vintage as soon as the first maturity measurements are available. This work could have several applications in the decision support field.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2010

Type: Article

Authors

Dupin Séverine (1), Tisseyre Bruno (2) , Roger Jean-Michel (1), Gobrecht Alexia (1)

(1) Joint Research Unit ITAP, Cemagref Montpellier, 361 rue Jean-François Breton – BP5095, 34196 Montpellier
cedex 05, France
(2) Joint Research Unit ITAP, Montpellier SupAgro, Batiment 21, 2 place Viala, 34060 Montpellier, France

Keywords

Grape ripening – Modelling – Simulation – Decision support

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Influence of thermal stress on Malbec, Syrah, and Bonarda (Vitis vinifera L.) anthocyanin content and evolution in growing seasons with heatwaves in semi-arid climate (Argentina)

It is known that high temperature influences the synthesis, transformation and degradation of grape anthocyanin (ANT) threatening the quality of grapes and coloured wines.

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

Winery by-products as potential bioresources for green valorization and sustainable biotechnological applications

The wine and distillery industries are among the most prominent sectors in EU agriculture, where 75% of grape production is dedicated to winemaking.

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in