Terroir 2020 banner
IVES 9 IVES Conference Series 9 Under-vine cover crops: impact on weed development, yield and grape composition

Under-vine cover crops: impact on weed development, yield and grape composition

Abstract

OENO One – Special issue

This study aims to evaluate the interest of using an under-vine cover crop as a sustainable management tool replacing herbicides or tillage to control weeds, evaluating its effects on yield and berry parameters in a semi-arid climate. 
The performance of Trifolium fragiferum as an under-vine cover crop was evaluated in 2018 and 2019 in a Merlot vineyard in Traibuenas (Navarra, Spain). This trial showed that the soil under the vines was covered by 80 % of the cover crop in August 2018 and 100 % in Aug 2019, with clover (T. fragiferum) comprising around 26 % and 70 % of the cover crop surface, respectively. The presence of the cover crop only reduced the number of shoots in the second year, although both years there was an increment in water stress. Neither yield, cluster weight nor berry weight were affected by the presence of the under-vine cover crop. Similarly, no changes in grape composition were observed. 
The use of T. fragiferum-like cover crops under the vine allows for better control of weeds, provided a good installation is achieved. In the first two years, this cover crop reduced vegetative growth and increased water deficit slightly. However, no changes in yield and grape composition were observed.
In a context of herbicide suppression and search for sustainable management, under-vine clover cover crops constitute a viable alternative in semi-arid regions provided drip irrigation can be applied. 

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

Javier Abad1,2, Diana Marín2, Luis Gonzaga Santesteban2, Jose Felix Cibriain3 and Ana Sagüés

1INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain 
2Dpt. Agronomy, Biotechnology and Food Science, Univ. P. de Navarra, Campus Arrosadia, 31006 Pamplona, Spain 
3Sección de Viticultura y Enología, Gobierno de Navarra, C/Valle de Orba nº34, 31390, Olite, Spain 

Contact the author

Keywords

Trifolium fragiferum L., vine, water potential, Carbon isotope ratio

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Exploring resilience and competitiveness of wine estates in Languedoc-Roussillon in the recent past: a multi-level perspective

The Languedoc-Roussillon wineries are facing a decline in wine yields particularly PGI yields due to many factors. Climate change is just ones, but is expected to increase in the future. There is also structurally a large heterogeneity of yield profiles among terroirs, varieties and strategies. This work investigates the link between yield, competitiveness and resilience to explore how resilient winegrowers have been in the recent past. To this end two approaches have been combined; (i) an accountancy database analysis at estate scale and (ii) municipality level competitiveness analysis. A new resilience indicator that characterizes the capacity of an estate to absorb yield variation is also defined. The FADN database between 2000 and 2018 of ex-Languedoc-Roussillon (France) and other data are used to analyse the current situation and the past evolution of competitiveness and resilience by type of estate (type of farm: PGI and/or PDO & type of commercialization: bulk and/or bottles). The net margin, which defines competitiveness, is not correlated to yield for all types but depends on the type of commercialization and the level of specialisation. The resilience indicator shows that the net margin of estates specialized in PGI is particularly sensitive to yield declines. We also show that price evolutions seem to compensate the effect of yield losses for the majority of types. Municipality scale analysis shows the links between local pedoclimate, yield, commercialization strategies and price. Overlapping a PDO with a PGI does not always increase a municipality’s PGI competitiveness. It is difficult to make links between causes and effects due to the complexity of the wine production system. Production diversification may be a solution. Resorting to the two level of analysis helps resolving the data gap that is necessary to explore the links between yield and economic performance of the wine estates in the long term.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.