Macrowine 2021
IVES 9 IVES Conference Series 9 In line monitoring of red wine fermentations using ir spectrospcopy

In line monitoring of red wine fermentations using ir spectrospcopy

Abstract

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013). This is primarily to ensure that process conditions are maintained at optimal set points, thus improving consistency, efficiency, and control. Implementation of infrared technology and chemometrics in the wine industry has been extensively studied and has been found to be a suitable method of process monitoring, especially when considered in the context of phenolic extraction. However, these studies have conducted spectroscopic analysis off-line and with highly clarified samples (Aleixandre-Tudo et al., 2018; Cavaglia et al., 2020). For the technology to be more applicable to a real life scenario, a shift towards in-line monitoring must be made. The ultimate aim of this study was the development of an automated sampling and analysis system. This system would allow spectroscopic and chemometric technology to become more commonly in commercial cellars and for precision monitoring of phenolic extraction. May challenges exist when sampling directly from a fermentation tank and these can include high levels of turbidity, pipe blockages, exposure to oxygen, and ensuring that a sample is representative of the contents of the fermentation vessel. Turbidity, in particular, is a concern when utilizing spectroscopic methods as the suspended solids may interfere with the trajectory of the radiation, resulting in abnormal spectra and, therefore, inaccurate measurements. A prototype system making use of a series of filter screens was developed and prototyped to determine whether automated sampling and analysis would be possible in a cellar with multiple tanks and a single instrument. Automation software was developed to initiate the IR scanning and the subsequent analysis of the sample, displaying the results for tannin content, anthocyanin and polymeric pigment content, total phenolic index and colour density graphically for the user or winemaker. In addition to this, chemometric models were built to account for the effect of suspended solids in a fermenting sample. The system, as a whole, showed promise with samples being successfully drawn from the tanks and analysed. Lastly, statistical analysis showed that the chemometric models were robust, accurate and suitable for the intended application.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kiera Nareece Lambrecht 

Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology,Dr José Aleixandre-Tudo, Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos and Stellenbosch University, South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology  Prof Wessel Du Toit, Stellenbosch University, South African Grape and Wine Research (SAGWRI) Institute, Department of Viticulture and Oenology

Contact the author

Keywords

in-line monitoring, process control, spectroscopy, chemometrics

Citation

Related articles…

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.

From local classification to regional zoning. The use of a geographic information system (GIS) in Franconia / Germany. Part 3: classification of soil parameters in vineyards

La conservation de la fertilité du sol est un aspect primordial dans la viticulture durable. Différents paramètres, comme par exemple la topographie, la composition du sol, les conditions climatiques, influencent la fertilité du sol des surfaces viticoes.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.