Climate, grapes, and wine: structure and suitability in a variable and changing climate

Abstract

Climate is a pervasive factor in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Climate’s influence on agribusiness is never more evident than with viticulture and wine production where climate is arguably the most critical aspect in ripening fruit to optimum characteristics to produce a given wine style. Any assessment of climate for wine production must examine a multitude of factors that operate over many temporal and spatial scales. Namely climate influences must be considered at the macroscale (synoptic climate) to the mesoscale (regional climate) to the toposcale (site climate) to the microscale (vine row and canopy climate). In addition, climate influences come from both broad structural conditions and singular weather events manifested through many temperature, precipitation, and moisture parameters. To understand climate’s role in growing winegrapes and wine production one must consider 1) the weather and climate structure necessary for optimum quality and production characteristics, 2) the climate suitability to different winegrape cultivars, 3) the climate’s variability in wine producing regions, and 4) the influence of climate change on the structure, suitability, and variability of climate.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G.V. Jones

Department of Environmental Studies
Southern Oregon University
1250 Siskiyou Blvd
Ashland, Oregon

Contact the author

Keywords

Climate, grapes, wine, temperature, climate change, climate variability

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid

Ochratoxin a degradation by Botrytis cinerea laccase: effect of oenological factors and redox mediators

This study evaluates the effect of different oenological factors and natural mediators on the degradation of Ochratoxin A (OTA) using Botrytis cinerea laccase.

Melatonin priming retards fungal decay in postharvest table grapes 

Postharvest losses of fruits may reach in some cases 40% in developed countries. This food waste has a significant carbon footprint and makes a major contribution toward greenhouse gas emissions so sustainable postharvest strategies are being investigated.
Melatonin, a well-known mammalian neurohormone, has been investigated as a priming agent to slow down fungal decay progression in postharvest climacteric and some non-climacteric fruits. However, the molecular and metabolic mechanisms responsible for such enhancement of disease tolerance are largely unknown.

Application of regenerative agriculture to viticulture: The REVINE project

Conventional viticulture improved the quality of production, but the economic costs can be unsustainable. Today, producers need to consider consumers’ demands for healthy, eco-friendly products. Institutions promote sustainable agriculture, with regenerative agriculture being the latest generation of methodologies focused on recovering losses and ensuring future sustainability. The revine project studies regenerative agricultural technology applied in mediterranean countries to provide precise indications for soil processing and effective vineyard treatments.

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].