Climate, grapes, and wine: structure and suitability in a variable and changing climate

Abstract

Climate is a pervasive factor in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Climate’s influence on agribusiness is never more evident than with viticulture and wine production where climate is arguably the most critical aspect in ripening fruit to optimum characteristics to produce a given wine style. Any assessment of climate for wine production must examine a multitude of factors that operate over many temporal and spatial scales. Namely climate influences must be considered at the macroscale (synoptic climate) to the mesoscale (regional climate) to the toposcale (site climate) to the microscale (vine row and canopy climate). In addition, climate influences come from both broad structural conditions and singular weather events manifested through many temperature, precipitation, and moisture parameters. To understand climate’s role in growing winegrapes and wine production one must consider 1) the weather and climate structure necessary for optimum quality and production characteristics, 2) the climate suitability to different winegrape cultivars, 3) the climate’s variability in wine producing regions, and 4) the influence of climate change on the structure, suitability, and variability of climate.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G.V. Jones

Department of Environmental Studies
Southern Oregon University
1250 Siskiyou Blvd
Ashland, Oregon

Contact the author

Keywords

Climate, grapes, wine, temperature, climate change, climate variability

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Composition of grape grown on different Homogenous Terroir Units (HTU)

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.

The impact of differences in soil texture within a vineyard on vine development and wine quality

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances.

Chardonnay white wine bottled with different oenological tannins: effect on colour traits, volatile composition and sensory attributes during shelf-life

The use of oenological tannins during winemaking has been mostly studied for improving colour traits and stability on red wines. Their effectiveness mainly depends on the tannin composition, grape variety and winemaking approach [1].

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil.