Climate, grapes, and wine: structure and suitability in a variable and changing climate

Abstract

Climate is a pervasive factor in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality, and ultimately driving economic sustainability. Climate’s influence on agribusiness is never more evident than with viticulture and wine production where climate is arguably the most critical aspect in ripening fruit to optimum characteristics to produce a given wine style. Any assessment of climate for wine production must examine a multitude of factors that operate over many temporal and spatial scales. Namely climate influences must be considered at the macroscale (synoptic climate) to the mesoscale (regional climate) to the toposcale (site climate) to the microscale (vine row and canopy climate). In addition, climate influences come from both broad structural conditions and singular weather events manifested through many temperature, precipitation, and moisture parameters. To understand climate’s role in growing winegrapes and wine production one must consider 1) the weather and climate structure necessary for optimum quality and production characteristics, 2) the climate suitability to different winegrape cultivars, 3) the climate’s variability in wine producing regions, and 4) the influence of climate change on the structure, suitability, and variability of climate.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G.V. Jones

Department of Environmental Studies
Southern Oregon University
1250 Siskiyou Blvd
Ashland, Oregon

Contact the author

Keywords

Climate, grapes, wine, temperature, climate change, climate variability

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Sensory impact of acetaldehyde addition in Syrah red wines

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-

The geological and geomorphological events that determine the soil functional characters of a terroir

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.

La zonazione viticola e i compiti dell’amministrazione regionale

Solo attraverso un adeguato intervento di estirpazione e reimpianto dei vigneti è possibile preservare, adeguare e valorizzare il patrimonio viticolo e le produzioni che da esso derivano.
Il reimpianto dei vigneti è pertanto da intendersi come una normale pratica agricola, alla pari della rimonta di stalla in campo zootecnico, ma può assumere toni problematici quando, come si verifica adesso in Toscana per una serie di circostanze legate alla profonda trasfor­mazione della viticoltura avvenuta negli ultimi 30 anni, troppi impianti giungono contem­poraneamente a fine ciclo produttivo e devono essere rinnovati.

Climat et sol: critères d’évaluation et effets sur le comportement de la vigne

Le zonage viticole aborde en premier lieu la caractérisation des macroclimats aux échelles des grandes régions, pays, continents ou monde (géoviticulture).

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters.