Terroir 2020 banner
IVES 9 IVES Conference Series 9 Regulated deficit irrigation and crop load interaction effects on grape heterogeneity

Regulated deficit irrigation and crop load interaction effects on grape heterogeneity


Aim: To investigate the interaction effects between irrigation and crop load and the resulting impact on grape heterogeneity within a Geographical Indication in South Australia. 

Methods and Results: Cabernet Sauvignon grapes were sampled at the time of harvest from the Coonawarra Geographical Indication where full and sustained deficit irrigation and crop load manipulations were implemented as a 2 × 2 factorial block design. Grape heterogeneity was quantified for each treatment at three levels (bunch, vine and block) using berry density categories that were related to grape maturity. Furthermore, each density category was characterised in terms of total soluble solids, berry fresh weight, tannin content and tartaric and malic acid concentrations. Irrigation and crop load interaction effects on grape heterogeneity were observed for intra- cluster, vine, and between blocks.


This research reveals the extent of heterogeneity existing in the vineyard at the time of harvest, and presents management techniques that may mitigate grape ripeness variation in the vineyard.

Significance and Impact of the Study: Grape heterogeneity is an important consideration for the production of high quality red wine, as high proportions of under ripe and/or overripe fruit present at the time of harvest have been shown to negatively impact colour, mouthfeel, and varietal aroma of the wine. Furthermore, the presence of overripe/shrivelled grapes with excessive sugar concentrations can lead to increased ethanol in the wine. Previous research has acknowledged the impact that the three focal aspects of terroir – climate, soil and cultivar – have on grape composition, with the overarching effects of climate being highlighted. Vine water status and vine balance can conceivably mediate some of the influences of climate on grape composition, but there has been limited literature delving into the effects on grape heterogeneity. By investigating vineyard management techniques with a view to minimising grape heterogeneity, this research gives insight into the optimisation of grape production, especially in hotter climates that are more susceptible to producing overripe fruit.


Publication date: March 25, 2021

Issue: Terroir 2020

Type: Video


Claire Armstrong1,2, Pietro Previtali1,2, Vinay Pagay1,2, Paul Boss1,3, David Jeffery1,2*

1 ARC Training Centre for Innovative Wine Production, The University of Adelaide, PMB 1 Glen Osmond, SA, 5064, Australia
2 The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA, 5064, Australia
3 CSIRO Agriculture and Food, Locked Bag 2, Glen Osmond, SA 5064, Australia

Contact the author


Vineyard management techniques, vineyard variation, grape composition, Cabernet Sauvignon, red wine quality


IVES Conference Series | Terroir 2020


Related articles…

Swiss program for the creation of fungal disease resistant grape varieties in Switzerland

Grapevine breeding is part of the research program of Agroscope in Switzerland since 1965. From 1965 to 1995, the aim of the Vitis vinifera crosses was to obtain a high resistance to grey rot (Botrytis cinerea), one of the most virulent fungal pathogens in the Swiss vineyard. In 2021, the grape varieties released from this first breeding program covered 936 ha of the 15’000 ha of the Swiss vineyard.
In 1996, a second breeding program aimed at obtaining, by classical interspecific hybridization, grape varieties resistant to downy mildew (Plasmopara viticola) and powdery mildew (Erisyphe necator) and less sensitive to grey rot (Botrytis cinerea). In order to accelerate and make the selection process more reliable, an early biochemical test was developed based on the natural defense mechanisms of the vine against downy mildew (stilbene phytoalexins). The synthesis of stilbenes (i.e., resveratrol and its oxidized dimers - and -viniférine) and pterostilbenes (methylated derivative) is among the most efficient induced defense mechanisms of grapevine against fungal pathogens on both the leaves and the clusters.

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.