Effetti del cambiamento climatico europeo sulle epoche di vendemmia in Abruzzo

Abstract

[English version below]

I dati termo-pluviometrici del periodo 1971-2009 registrati da alcune stazioni della regione Abruzzo sono stati analizzati adottando alcuni semplici indici climatici e bioclimatici. E’ stato valutato il verificarsi di cambiamenti climatici così come le loro ripercussioni sulle date di inizio vendemmia. La data di vendemmia è risultata significativamente influenzata dalle disponibilità termiche e in particolare dalle Ore Normali di Caldo (NHH) cumulate nel periodo marzo-giugno. L’analisi statistica dei trend temporali dell’ accumulo di NHH in marzo-giugno ha individuato una discontinuità climatica che ricade nel 1984 per la collina litoranea centrale, nel 1997 per la collina litoranea meridionale e nel 1998 per la collina interna del pescarese. Questi punti di discontinuità sono risultati in buon accordo con i punti di discontinuità delle date di inizio raccolta e possono pertanto rappresentare lo spartiacque tra la precedente e l’attuale fase climatica. Quest’ultima si caratterizza per un anticipo della data di raccolta rispettivamente di 10 giorni per la collina litoranea meridionale , 15 per la collina litoranea centrale e 14 per la collina interna.

Thermo-pluviometric data registered in the period 1971-2009 by three hillside stations of the Abruzzi located in maritime areas (central and southern part of the region) and in the internal zone were analyzed adopting some simple climatic and bioclimatic indices. Occurrence of climate change was evaluated as well as its influence on harvest dates. Harvest dates were significantly influenced by thermal availability, mainly when it was measured by Normal Heat Hours referred to the period March-June (NHH march-june). The statistical analysis of the temporal trends of NHH march-june has identified change-points occurred in a lapse of time from 1984 to 1998. The first abrupt change happened in central maritime area (1984), followed in 1997 and 1998 seasons by change-points respectively registered in southern maritime area in the internal zone. These NHH march-june break-points were in a good relationship with harvest date break-points and seem to well represent the watershed between the previous and the current climatic phase. This latter is characterized by an advance in harvest date around 10 days in southern maritime area and averaging 14-15 days in central maritime area and internal zone.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

B. Di Lena (1)(2) , L. Mariani (3), F. Antenucci (2), O. Silvestroni (1)

(1) Dip. Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche, Via Brecce bianche, 60131 Ancona
(2) Regione Abruzzo – Arssa – Centro Agrometeorologico Regionale, C.da Colle Comune, 66020 Scerni (Chieti)
(3) Università di Milano- Dipartimento di Produzione Vegetale, Via Celoria, Milano

Keywords

Vitis vinifera, fenologia, ore normali di caldo
Vitis vinifera, climate change, harvest date

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

The pedoclimatic conditions impact the yeast assimilable nitrogen concentration in the grapevine must and the valorisation of foliarnitrogen fertilisation

Aims: Agroscope investigated the efficiency of nitrogen fertilisation via foliar urea application at veraison with the aim of raising the yeast assimilable nitrogen (YAN) concentration in the musts

The adaptation and resilience of scions and rootstocks to water constraint

The ability of grapevine cultivars and rootstocks to cope with and adapt to recurring water constraints is the focus of this study. The contribution of intrinsic (epigenetic) and extrinsic (rootzone microbial community) factors to water stress resilience will be discussed. The study was conducted in a validated model vineyard where three scion cultivars (Pinotage, Shiraz, and Cabernet Sauvignon) on two rootstocks (Richter 110 and USVIT8-7) grow under recurring seasonal water constraint (and control) scenarios since planting (in 2020). Comprehensive profiling of the site, soil, atmospheric conditions, plants, and their physiological responses provide contextual data for the analyses conducted.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Observatoire du Grenache en Vallée du Rhône: incidence du terroir sur la diversité analytique et sensorielle des vins

Rhone Valley A.O.C. Vineyards cover more than 70 000 hectares, of wich more than 40 000 plantedwith Grenache N. The Grenache observatory was created in 1995.