Effetti del cambiamento climatico europeo sulle epoche di vendemmia in Abruzzo

Abstract

[English version below]

I dati termo-pluviometrici del periodo 1971-2009 registrati da alcune stazioni della regione Abruzzo sono stati analizzati adottando alcuni semplici indici climatici e bioclimatici. E’ stato valutato il verificarsi di cambiamenti climatici così come le loro ripercussioni sulle date di inizio vendemmia. La data di vendemmia è risultata significativamente influenzata dalle disponibilità termiche e in particolare dalle Ore Normali di Caldo (NHH) cumulate nel periodo marzo-giugno. L’analisi statistica dei trend temporali dell’ accumulo di NHH in marzo-giugno ha individuato una discontinuità climatica che ricade nel 1984 per la collina litoranea centrale, nel 1997 per la collina litoranea meridionale e nel 1998 per la collina interna del pescarese. Questi punti di discontinuità sono risultati in buon accordo con i punti di discontinuità delle date di inizio raccolta e possono pertanto rappresentare lo spartiacque tra la precedente e l’attuale fase climatica. Quest’ultima si caratterizza per un anticipo della data di raccolta rispettivamente di 10 giorni per la collina litoranea meridionale , 15 per la collina litoranea centrale e 14 per la collina interna.

Thermo-pluviometric data registered in the period 1971-2009 by three hillside stations of the Abruzzi located in maritime areas (central and southern part of the region) and in the internal zone were analyzed adopting some simple climatic and bioclimatic indices. Occurrence of climate change was evaluated as well as its influence on harvest dates. Harvest dates were significantly influenced by thermal availability, mainly when it was measured by Normal Heat Hours referred to the period March-June (NHH march-june). The statistical analysis of the temporal trends of NHH march-june has identified change-points occurred in a lapse of time from 1984 to 1998. The first abrupt change happened in central maritime area (1984), followed in 1997 and 1998 seasons by change-points respectively registered in southern maritime area in the internal zone. These NHH march-june break-points were in a good relationship with harvest date break-points and seem to well represent the watershed between the previous and the current climatic phase. This latter is characterized by an advance in harvest date around 10 days in southern maritime area and averaging 14-15 days in central maritime area and internal zone.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

B. Di Lena (1)(2) , L. Mariani (3), F. Antenucci (2), O. Silvestroni (1)

(1) Dip. Scienze Ambientali e delle Produzioni Vegetali, Università Politecnica delle Marche, Via Brecce bianche, 60131 Ancona
(2) Regione Abruzzo – Arssa – Centro Agrometeorologico Regionale, C.da Colle Comune, 66020 Scerni (Chieti)
(3) Università di Milano- Dipartimento di Produzione Vegetale, Via Celoria, Milano

Keywords

Vitis vinifera, fenologia, ore normali di caldo
Vitis vinifera, climate change, harvest date

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Organoleptic and analytical impacts of the color of glass of the bottles on Chasselas wine

This study was performed on Chasselas wine to assess the impact of exposure to wine light according to several glass color of bottles. The aim was to highlight any differences whether from an organoleptic or analytical point of view depending on the color. For this, four different shades were compared, dead leaf, green, cinnamon and transparent. A control, not treated with light, was also included in the study…

Identification of the agronomical and landscapes potentialities in “Côtes du Rhône” area (France)

“Côtes du Rhône”, like many other controlled appellation wine, represents high stakes in the economical, social cultural and historical domains. The scenery formed by vineyards reveals these cultural values. It offers by a pleasant and appealing environment for the inhabitants and the tourists. It is also a powerful marketing tool for the winemakers.

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.