GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Utilization of remote sensing technology to detect riesling vineyard variability

Utilization of remote sensing technology to detect riesling vineyard variability

Abstract

Context and purpose of the study – Vineyard blocks can vary spatially with respect to several viticulturally significant qualities such as soil variables, vine vigor, vine physiology, yield components, and berry composition. The ability to detect this variation enables the application of precision viticulture, whereby intra‐vineyard variability can be readily identified and corresponding responses can be made. Although it has been well established that this variation can exist, its detection is often difficult, with vineyard blocks spanning large areas and variation occurring over several variables. The aim of this project was to determine if remote and proximal sensing technologies could be used to detect this vineyard variation in six Ontario Riesling vineyards over a 3‐year period.

Material and methods – Six commercial Riesling vineyards across the Niagara Peninsula in Ontario, Canada were selected and 80‐100 grapevines, in a ≈8 m x 8 m grid pattern, were identified and geolocated. From these vines, the following variables were measured in 2015‐2017: soil moisture, vine water status (leaf water potential, leaf ψ; leaf stomatal conductance, gs), vine size, yield components, berry composition, winter hardiness, and grapevine leaf roll‐associated virus (GLRaV) infection. Furthermore, two sensing technologies—a ground‐based red/green/blue (RGB) proximal sensing system (GreenSeeker), and an unmanned aerial vehicle (UAV) with two sensors (RGB and thermal), collected electromagnetic reflectance from each vineyard block. These data were transformed into normalized difference vegetation index (NDVI). Lastly, replicate wines were made from grapes harvested from areas of low vs high NDVI. Wines were subjected to sensory sorting and the sorting data were subjected subsequently to correspondence analysis, creating a Chi‐square metric map that displayed the wines and their descriptors on a descriptor‐based space. The overall hypothesis was that maps produced from NDVI data could be used to detect variation in other variables such as leaf ψ, gs, berry composition, and GLRaV status, as well as implicate wine quality.

Results – NDVI maps demonstrated similar spatial configurations to maps of yield, vine size, berry weight, water status, and berry composition. Spatial zones corresponding to high NDVI were associated with zones of high vine water status, vine size, yield, titratable acidity (TA) and low soluble solids and terpene concentration. NDVI data as well as vine size, leaf ψ, gs, GLRaV infection, winter hardiness, and berry composition consisted of significant spatial clustering within the vineyard. Both the proximal and UAV technologies produced maps of similar spatial distributions; however, the GreenSeeker NDVI data provided more significant relationships with agricultural data compared to the UAV NDVI. Direct positive correlations were observed between NDVI vs. vine size, leaf gs, leaf ψ, GLRaV infection, yield, berry weight, and TA and inverse correlations with soluble solids and terpene concentration. Wines created from areas of high vs low NDVI differed slightly in basic wine composition (pH, TA, ethanol). Sensorially, panelists were often able to distinguish between wines made from high vs. low NDVI zones and associate those wines with specific descriptors. Ultimately, remote sensing demonstrates the ability to consistently detect areas within a vineyard differing in several important variables, which have implications for vine physiology, berry composition, and wine sensory attributes.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Andrew REYNOLDS (1), Briann DORIN (1), Hyun‐Suk LEE (1), Adam SHEMROCK (2), Ralph BROWN (1), Marilyne JOLLINEAU (1)

(1) Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
(2) AirTech UAV Solutions INC. 1071 Kam Ave, Inverary, ON K0H 1X0, Canada

Contact the author

Keywords

 Viticulture, Remote Sensing, Terroir, UAV, Precision viticulture

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.

Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

‘Mavrodafni’ (Vitis vinifera L.) is considered one of the oldest grapevine cultivars indigenous to the Greek vineyard, with western Peloponnese being its primary center of cultivation. ‘Renio’ is considered to be either a variant of ‘Mavrodafni’ or an altogether different cultivar. Both ‘Mavrodafni’ and ‘Renio’ can be found in the vineyards of the centers of cultivation, since ‘Renio’ is considered to be more productive compared to ‘Mavrodafni’, and for this reason, it has gradually replaced ‘Mavrodafni’ from cultivation over the course of time. The aim of the present study was to assay the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries coming from ‘Mavrodafni’ and ‘Renio’, cultivated in the same vineyard as well as in the different regions of cultivation of the PDO Mavrodafni Patras.

Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

In recent years several strategies have been proposed to cope with the effect of climate change on grape berry quality but only a few studies have dealt with the influence of management practices implemented in the field (e.g. irrigation,summer pruning, etc.), on the evolution of wines over time. 

Analyse climatique à l’échelle des Coteaux du Layon

Les études d’impact du climat sur la vigne nécessite de descendre à des échelles très fines car les facteurs climatiques sont tributaires de la topographie, la végétation, les expositions … Dans le cadre du programme ANR-JC Terviclim, 22 capteurs ont été installés dans les vignobles des Coteaux du Layon afin de caractériser le climat particulier de ces terroirs. L’analyse des températures montre de fortes disparités entre les data loggers et pourtant situés parfois sur les mêmes parcelles ou sur des parcelles voisines. Les indices bioclimatiques tels les degrés jours sont également contrastés suivant la situation des capteurs sur les coteaux.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.