GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Utilization of remote sensing technology to detect riesling vineyard variability

Utilization of remote sensing technology to detect riesling vineyard variability

Abstract

Context and purpose of the study – Vineyard blocks can vary spatially with respect to several viticulturally significant qualities such as soil variables, vine vigor, vine physiology, yield components, and berry composition. The ability to detect this variation enables the application of precision viticulture, whereby intra‐vineyard variability can be readily identified and corresponding responses can be made. Although it has been well established that this variation can exist, its detection is often difficult, with vineyard blocks spanning large areas and variation occurring over several variables. The aim of this project was to determine if remote and proximal sensing technologies could be used to detect this vineyard variation in six Ontario Riesling vineyards over a 3‐year period.

Material and methods – Six commercial Riesling vineyards across the Niagara Peninsula in Ontario, Canada were selected and 80‐100 grapevines, in a ≈8 m x 8 m grid pattern, were identified and geolocated. From these vines, the following variables were measured in 2015‐2017: soil moisture, vine water status (leaf water potential, leaf ψ; leaf stomatal conductance, gs), vine size, yield components, berry composition, winter hardiness, and grapevine leaf roll‐associated virus (GLRaV) infection. Furthermore, two sensing technologies—a ground‐based red/green/blue (RGB) proximal sensing system (GreenSeeker), and an unmanned aerial vehicle (UAV) with two sensors (RGB and thermal), collected electromagnetic reflectance from each vineyard block. These data were transformed into normalized difference vegetation index (NDVI). Lastly, replicate wines were made from grapes harvested from areas of low vs high NDVI. Wines were subjected to sensory sorting and the sorting data were subjected subsequently to correspondence analysis, creating a Chi‐square metric map that displayed the wines and their descriptors on a descriptor‐based space. The overall hypothesis was that maps produced from NDVI data could be used to detect variation in other variables such as leaf ψ, gs, berry composition, and GLRaV status, as well as implicate wine quality.

Results – NDVI maps demonstrated similar spatial configurations to maps of yield, vine size, berry weight, water status, and berry composition. Spatial zones corresponding to high NDVI were associated with zones of high vine water status, vine size, yield, titratable acidity (TA) and low soluble solids and terpene concentration. NDVI data as well as vine size, leaf ψ, gs, GLRaV infection, winter hardiness, and berry composition consisted of significant spatial clustering within the vineyard. Both the proximal and UAV technologies produced maps of similar spatial distributions; however, the GreenSeeker NDVI data provided more significant relationships with agricultural data compared to the UAV NDVI. Direct positive correlations were observed between NDVI vs. vine size, leaf gs, leaf ψ, GLRaV infection, yield, berry weight, and TA and inverse correlations with soluble solids and terpene concentration. Wines created from areas of high vs low NDVI differed slightly in basic wine composition (pH, TA, ethanol). Sensorially, panelists were often able to distinguish between wines made from high vs. low NDVI zones and associate those wines with specific descriptors. Ultimately, remote sensing demonstrates the ability to consistently detect areas within a vineyard differing in several important variables, which have implications for vine physiology, berry composition, and wine sensory attributes.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Andrew REYNOLDS (1), Briann DORIN (1), Hyun‐Suk LEE (1), Adam SHEMROCK (2), Ralph BROWN (1), Marilyne JOLLINEAU (1)

(1) Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
(2) AirTech UAV Solutions INC. 1071 Kam Ave, Inverary, ON K0H 1X0, Canada

Contact the author

Keywords

 Viticulture, Remote Sensing, Terroir, UAV, Precision viticulture

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Caracterización de las tierras de viña de Navarra

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains.

Bio‐metaethics viticulture proposed by the Giesco. Direct charter with producers. Example of evaluation of training systems

The key points of the current GiESCO charter ‘BIO‐MetaEthics’ are exposed. The new development in cooperation with Giovanni Cargnello is to apply the principles and the content into the practice by establishing a direct contract with producers and other actors of the wine sector. An evaluation sheet is proposed and tested in a new advanced vineyard. For illustrating the methodology of evaluation, the example of the choice of the training systems is detailed on a wide range of situations. 

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Polyphenol content examination of Tokaji Aszú wines

We must state that two conditions above are only prevalent in the case when the processed grapes are full or over ripened, besides following the Tokaj wines preparation criterions (grape variety, soil, microclimate, vintage, etc.). These two conditions mentioned before were followed up only sensory based analysis up to now, altough the study of chemical idetified compounds which confirms these are obviuos.