Climate change – variety change?

Abstract

In Franconia, the northern part of Bavaria in Germany, climate change, visible in earlier bud break, advanced flowering and earlier grape maturity, leads to a decrease of traditionally cultivated early ripening aromatic white wine varieties as Mueller-Thurgau (30 % of the wine growing area) and Bacchus (12 %). With the predicted rise of temperature in all European wine regions the conditions for white wine grape varieties will decline and the grapes themselves will lose a part of their aromatic and fruity expression. Variety change towards the cultivation of later ripening white wine varieties is a very expensive and long-term process, and must be accompanied by special marketing efforts.
In the “cool climate” region Franconia, adapted methods are required for the longer use of traditionally grown aromatic early ripening varieties. Studies about maturity management of the early ripening variety Mueller-Thurgau show first results. Cordon pruning compared with traditional spur pruned training system, leads in dependence of botrytis infection to a maturity delay of 4 up to 6 days. The new natural growth training system, also called “minimal pruning”, results in a maturity delay of 8 up to 12 days in the same varieties.
Later grape harvest times economize energy for must cooling and fermentation control. Lower night temperatures can better conserve the fresh and fruity flavours of these aromatic grapes. The consequences of maturity retardation effects on must and wine quality will be studied.

DOI:

Publication date: November 23, 2021

Issue: Terroir 2010

Type: Article

Authors

Arnold Schwab, Ulrike Maaß

Bavarian State Institute for Viticulture and Horticulture, An der Steige 15, D-97332 Veitshöchheim

Contact the author

Keywords

Climate change, Franconia, earlier harvest time, variety change, canopy management

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Enhancing viticulture sustainability with biochar: results of field experiments in Italy

The increasing vulnerability of viticulture to climate change necessitates innovative solutions to improve its sustainability and resilience.

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

Simulating the impact of climate change on viticultural systems in various European vineyards

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010).