IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Multivariate data analysis applied on Fourier Transform Infrared spectroscopy for the prediction of tannins levels during red wine fermentation

Abstract

Red wine is a beverage with one of the highest polyphenol concentration, which are extracted during the maceration step of the winemaking process. Sensory perception such as astringency and bitterness are mainly related to tannin concentration and composition. However, quick analytical measurement of polyphenolic compounds can be a real challenge for monitoring their extraction during fermentation. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. Thus, development of predictive models
using Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics analysis appears to be a reliable and rapid method to determine polyphenolic content during wines fermentation.

For this purpose, this work sought to determine correlation between FTIR analysis and regular quantification methods for tannins, for different samples, covering three different vintages with two different grape varieties, from the beginning to the end of the extraction process. The search for diversity was highlighted during the selection of samples, to provide the best representation of the winemaking process. Total tannin concentration was analyzed by protein and polysaccharide precipitation. Flavanol composition was obtained by HPLC-UV after phloroglucinolysis reaction. FTIR spectra were registered between 925 and 5011 cm-1 using Winescan. Correlation between spectral analyzes and the various analytical information obtained were sought with partial least squares (PLS) multivariate regression analysis, for designing prediction models. The different models were tested with cross validation, and validation with an external set of samples to the calibration. For the external validation, the dataset was split into calibration and validation using Kennard-Stone algorithm.

The objective of this study was to demonstrate the interest of FTIR with PLS multivariate regression analysis to predict tannins concentration during winemaking. Correlations obtained show relevant results for the studied parameters, with models coefficients for cross validation higher than 0.8 for flavanol content (except for epigallocatechin) and higher than 0.9 for total tannins concentrations. The results with external validation are slightly lower for total tannins concentrations, with coefficient of prediction around 0.87, and show a more important decrease for flavanol content, with coefficient of prediction close to 0.7. If models for total tannins already show a high robustness and prediction, models for flavanol content must be improve with other samples. However, the results are encouraging and an
increase of the robustness could allow following flavanol content during winemaking. This work is the first step for the construction of predictive models to quantify different flavanol parameters in red wine fermentation by FTIR spectroscopy.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Miramont Clément¹, Jourdes Michaël¹, Selberg Torben³, Winther J∅rgensenKasper³, Thiis Heide Søren³and Teissèdre Pierre-Louis¹

¹UR Œnologie EA 4577, Université de Bordeaux, ISVV
²USC 1366 INRAE, IPB, INRAE, ISVV
³FOSS Analytical A/

Contact the author

Keywords

Tannins, Flavanol, Partial least squares regression, Fourier Transform InfraRed

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.