Terroir 2010 banner
IVES 9 IVES Conference Series 9 Caratterizzazione varietale della CV. Vranac del Montenegro: primi risultati

Caratterizzazione varietale della CV. Vranac del Montenegro: primi risultati

Abstract

[English version below]

Questo studio ha permesso di raccogliere alcune informazioni sul profilo chimico della cultivar Vranac coltivata in Montenegro. L’uva ha mostrato di raggiungere un buon accumulo zuccherino indipendentemente dall’annata anche se coltivata su suoli diversi. Può raggiungere un buon tenore di antociani e un discreto contenuto di tannini, presenta un profilo antocianico a prevalenza di malvidina-3-G con tenori elevati di antociani acilati. Dal punto di vista aromatico si tratta di una cultivar neutra con un profilo glicosidico a prevalenza di benzenoidi. Dal confronto tra i vini sperimentali e quelli del commercio si può osservare che le potenzialità del vitigno sono buone ma vanno potenziate con un’adatta tecnica di vinificazione per cui saranno necessarie ulteriori prove tecnologiche.

This study has allowed us to gather some information on the chemical profile of Vranac cultivars grown in Montenegro. The grape has been shown to achieve good sugar accumulation independent of the year even if grown on different soils. It can reach a good content of anthocyanins and medium of tannins. Malvidina-3-G was predominant in the anthocyanic profile and the levels of acylated anthocyanins were high. It is a neutral cultivar with a prevalence of glycosidic benzenoids in the aroma profile. The comparison between the experimental and commercial wines can assume that the potential of the grapes are good but must be reinforced with a suitable winemaking which will require further studies.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

R. Guaschino (1), A. Asproudi (1), M. Bogicevic (2), E. Bertolone (1) e D. Borsa (1)

(1) CRA – Centro di Ricerca per l’Enologia Via P. Micca, 35, Asti, Italia
(2) Terre d’Oltrepo’ – Soc. Agric. Cooperativa Via San Saluto 81, Broni, Italia

Contact the author

Keywords

Vranac, antociani, proantocianidine, flavonoli, precursori d’aroma
Vranac, anthocyanins, proanthocynidins, flavonols, aroma precursors

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Ultra high pressure liquid chromatography for stilbenes separation and their determination in Burgundy red wines

In this study for the first time, eight natural stilbenes (trans-resveratrol, trans-piceid, cis-piceid, trans-astringin, trans-piceatannol, (+)-trans-s-viniferin, pallidol and hopeaphenol) isolated and purified from Vitis vinifera, were simultaneously separated and analysed within 5 mn by ultra high pressure liquid chromatography coupled with photodiode array detection.

Carbohydrate dynamics in Shiraz to determine seasonal allocation to the perennial and annual parts in respect to climatic challenges

The dynamic changes of non-structural carbohydrates (NSC) in grapevines during the growing season is driven by phenological events and environmental factors.

Le zonage viticole en Italie. État actuel et perspectives futures

Over the past few decades, viticultural research has made numerous contributions which have made it possible to better understand the behavior of the vine as well as its response to the conditions imposed on it by the environment and agronomic practices. However, these results have only rarely been used in the practical management of vineyards because the research has been carried out using partial experimental models where reality is only represented by a few factors which are sometimes even made more complex by the introduction of elements foreign to the existing situation and difficult to apply to production (varieties, methods of cultivation, management techniques, etc.). To these reasons, one could add a low popularization of the results obtained, as well as the difficulty of implementing the scientific contributions, which does not allow the different production systems to fully express their potential. This limit of viticultural research can only be exceeded by the design of integrated projects designed directly on and for the territory. Indeed, only the integrated evaluation of a viticultural agro-system, which can be achieved through zoning, makes it possible to measure, or even attribute to each element of the system, the weight it exerts on the quality of the wine.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.