OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Abstract

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine. Other aroma compounds, including a set of aldehydes and several γ-lactones, were also indicated to be related to ‘apricot’ aroma in that study, but the addition of these compounds to the reconstitution gave ambiguous results. 

To investigate these interactions, further reconstitution sensory studies were conducted. Firstly, in a wine-like model matrix, the aldehydes were found to suppress ‘apricot’ aroma intensity, while γ-lactones significantly enhanced the intensity of ‘apricot’, but only in the presence of a higher concentration of monoterpenes. Secondly, a neutral Chardonnay wine base spiked with the monoterpenes and γ-lactones together, or with only the monoterpenes added, was considered to have a similar ‘apricot’ aroma to a typical Viognier wine, whereas if spiked with only γ-lactones, then its aroma was not similar. Finally, a sensory difference study was conducted by comparing single or double strength γ-lactones in Chardonnay wine with added monoterpenes. No significant difference was found between the monoterpene-spiked Chardonnay wine and when γ-lactones were also added. Thus, γ-lactones are unlikely to impart or enhance ‘apricot’ aromas in white wine. 

Monoterpenes are grape-derived aroma compounds, but little is known regarding their accumulation in Viognier grapes. Having established the importance of monoterpenes to the perception of varietal ‘apricot’ aroma in Viognier wines, it is likely that controlling their concentration in the grapes can influence the ‘apricot’ aroma intensity in the resultant wine. 

To establish if clonal selection and harvest timing could be used as tools to modulate ‘apricot’ aromas in Viognier wines, vineyard studies were conducted. Eleven Viognier clones were assessed over three vintages. Large differences were found in the concentration of the monoterpenes between the clones. In a further study of four Viognier clones, two clones showed similar monoterpene concentration profiles throughout ripening, but the other clones were substantially lower in monoterpene concentration. Subsequently, a winemaking study was carried out to assess the effect of clone and grape ripeness on ‘apricot’ character in Viognier. Grapes from two Viognier clones were both picked at two ripening timepoints and from two wine regions with different climates.

Section for all references

DOI:

Publication date: June 19, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Tracey Siebert

The Australian Wine Research Institute, P.O. Box 197, Glen Osmond (Adelaide), SA, 5064, Australia

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Vers la maîtrise de l’effeuillage pré-floral de la vigne

Dans le cadre de TerclimPro 2025, Thibaut Verdenal a présenté l’article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8405

Spatial determination of areas in the Western Balkans region favorable for organic production

In problematic conditions for production of grapes and wine caused by the COVID-19 pandemic and the resulting occurrence of wine surpluses, producers are increasingly turning to the innovative viticulture and winemaking of products that are more appealing to the market and the consumers. On the other hand, consumption of the food safety or organic products, and therefore of organic grapes and wine, is increasingly common in the world, in particular in Europe. The Regional Rural Development Standing Working Group (SWG RRD), as a regional intergovernmental organization gathers actors in the viticulture and winemaking sector from states and territories of the Western Balkans (South-East Europe) in the Expert Working Group for Wine, with the aim of improving viticulture and winemaking in this region through joint activities. In accordance with the aforementioned, the SWG RRD is working on advancing organic production of grapes and wine, and on recognition of specificities of the terroir of wine-growing areas in Western Balkans. In addition, as part of the project “Facilitation of Exchange and Advice on Wine Regulations in Western Balkan Countries” helmed by the German Federal Ministry of Food and Agriculture, in addition to harmonization of relevant legislation with EU regulations, efforts are being invested towards recognition of organic wines. Within activities and project implemented by this organization, expert analyses and scientific research of the terroir of Western Balkans were carried out, and some of the results are presented in this paper.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.