terclim by ICS banner
IVES 9 IVES Conference Series 9 EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Abstract

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltra-tion technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine. Nevertheless, ultrafiltration was also applied to red wine, despite the removal of anthocyanins and tannins (associated with colour and textural properties) being inherently detrimental to wine quality, so as to better characterise the chemical consequences of membrane filtration. The composition of permeate and retentate derived from pilot-scale fractionation of red and white wine using 10 and 20 kDa membranes, and different permeation rates (50, 80, 90, 95%) was investigated. The alcohol content and pH of permeate and retentate were not significantly different from that of the initial wine, but titratable acidity and macromolecules (proteins, polysaccharides and phenolic compounds, including anthocyanins for red wine) were progressively concentrated in the retentate, as a function of both membrane MWCO and the degree of permeation. Red wine permeates were stripped of much of their essential character, such that they were not considered commercially acceptable; whereas the removal of white wine phenolics demonstrated the potential for ultrafiltration to remediate oxidised or highly phenolic wines. Subsequent trials investigated the addition of retentate to (i) fermenting red grape must, (ii) dealcoholised wine, and (iii) permeate, as a potential strategies for enhancing wine colour stability, flavour intensity and/or mouthfeel properties. Whereas colour enhancements were not apparent, likely due to the inherent effects of dilution, differences in wine flavour and mouthfeel were perceived via sensory profiling using the Rate-All-That-Apply method. Findings will enable the wine industry to make informed decisions regarding the suitability of ultrafiltration technology as an innovative approach to improving wine quality and process efficiency, and therefore profitability.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Stephanie Angela1,2, David Wollan2,3, Richard Muhlack1,2, Keren Bindon4, Kerry Wilkinson1,2

1. The University of Adelaide
2. The Australian Research Council Training Centre for Innovative Wine Production
3. VAF Memstar
4. The Australian Wine Research Institute

Contact the author*

Keywords

membranes, phenolics, proteins, wine

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EXPLORING THE ROLE OF TRANSITION METAL IONS IN THE EVOLUTION OF ESTERS COMPOSITION OF YOUNG WHITE WINE DURING AGEING

Young white wines are typically released to the market a few months after harvest, to be consumed within a year, when their fresh fruity aromas are still dominant and appealing to modern consumers. Esters, particularly higher alcohol acetates (HAAs) and ethyl esters of fatty acids (EEFAs), play a central role in the fruity expression of young white wines [1]. However, these esters are known to undergo significant hydrolysis during the first months of aging [1, 2].

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.