terclim by ICS banner
IVES 9 IVES Conference Series 9 In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Abstract

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges. New plant breeding technologies (NpBT) can be employed in grapevine cultivation and, in particular, genome editing through CRISPR/Cas9 system has been shown to be a valid application for targeted mutagenesis, by until now its application is restricted on a few cultivars. Genetic improvement via in vitro delivery of desired constructs requires the regeneration of genome-edited plants. In vitro plant regeneration, a pivotal process in genetic engineering, encounters obstacles, particularly in grapevines, due to factors like genotype and explant-dependent responses. Therefore, reliable in vitro regeneration and propagation systems are imperative. Understanding and enhancing regeneration across different genotypes are critical steps in advancing genetic improvements and gene functional studies in grapevines. The study focuses on developing an efficient in vitro plant regeneration protocol by somatic embryogenesis (SE) of the grapevine cv. Aglianico, the most important grapevine variety of southern Italy regions. The embryogenic materials obtained will be used for future functional studies through genome editing approaches.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Carmine Carratore1*, Edoardo Bertini2, Luca Cattaneo1, Clizia Villano3, Riccardo Aversano3, Mario Pezzotti1, Sara Zenoni1,2

1 Department of Biotechnology, University of Verona, 37134 Verona, Italy
2 Edivite s.r.l, San Pietro Viminario, Quartiere San Mauro 30, 35020 Padova, Italy
3 Department of Agricultural Sciences, University of Napoli Federico II, 80055 Portici, Italy

Contact the author*

Keywords

Vitis vinifera, Biodiversity, Genome Editing, Somatic Embryogenesis, Aglianico

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Long-term vineyard sustainability index

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment.

French wine sector facing climate change (part. 1): A national strategy built on a foresight and participatory approach

A foresight study was carried out by a group of experts from INRAE, universities, INAO and FranceAgriMer from 2014 as part of the multidisciplinary “laccave” project intended to anticipate climate change in the French wine industry. The initial objective was to initiate an interdisciplinary dialogue between researchers and to feed their questions in a more systemic way. The scenario development method made it possible to build possible futures for the wine sector in the face of climate change. It began by drafting four adaptation strategies, combining different possible intensities of innovation and relocation of the vineyard.

UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

The wine sector is one of the most significant industries worldwide, with Spain being a leading country in wine production and export. A key factor in wine quality is its aroma, which is directly influenced by the volatile compounds present in the grape, with terpenes being among the most significant contributors.

Promoting sustainability in Mediterranean agriculture: insights from the Portuguese vine & wine sector

Agroecology is an integrated approach that simultaneously applies ecological and social concepts and principles to redesign and manage food and agricultural systems, promoting agroecosystems with the necessary biological, socio-economic, and institutional diversity and alignment to support greater efficiency. Thus, several studies have been carried out at promoting the adoption of more agroecological practices among farmers and a wider audience concerning soil conservation and health maintenance.

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level.