Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effects of soil characteristics on manganese transfer from soil to vine and wine

Effects of soil characteristics on manganese transfer from soil to vine and wine

Abstract

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Methods and Results: Recent pedologic mapping of Beaujolais vineyards has enabled a Mn monitoring network to be set up in order to study Mn transfer from soil to vine and wine. Three soil types were considered. Two of the soils can be very high in EDTA Mn: soils from clays with cherts (soil type 7) and former piedmont deposits with leached soils (soil type 8). The third soil, though low in Mn, is the most important and symbolic of Beaujolais: granitic soil. Fifteen plots of Gamay were monitored during 3 years (2015-2017). Besides soil analysis made from pedologic pits, Mn content of petiole, must and wine (red standard wine-making of 40 kg grapes) were determined, as well as grape yield and biomass (pruning weight). Results show that Mn in petioles is better correlated with Mn in wine than Mn in must. Mn content of wine is little in relation with EDTA Mn in soil. It increases when soil pH or cation exchange capacity decreases.

Conclusions: 

This study has shown that Mn concentration in wine can be naturally very high (maximum of 14.6 g/L in this study). Soils with low cation exchange capacity and/or low pH, i.e. soil types 1 and 8, resulted in higher Mn content in wine. Low cation exchange capacity does not allow a great Mn fixation on clay-humic complex and low pH soil solubilizes metal generally and Mn in particular, so it can be taken up by the vine. Mn petiole content is a very good indicator of Mn content in wine. Maceration in red wine-making is also an element to take into consideration.

Significance and Impact of the Study: Mn content in Beaujolais wine can be very high because of soil type, rather than fraud. It is important to highlight this for wine exportations. Mn content in wine can be reduced by correcting the soil pH.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jean-Yves Cahurel1, Pierre Martini1*, B. Chatelet2, I. Letessier3

1Institut Français de la Vigne et du Vin, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône, France
2Sicarex Beaujolais, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône Cedex, France
3Sigales, 453 route de Chamrousse, 38410 St Martin d’Uriage, France

Contact the author

Keywords

Manganese, terroir, soil, Beaujolais, vine, wine

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine.

Eléments importants d’une méthodologie de caractérisation des facteurs naturels du terroir, en relation avec la réponse de la vigne à travers le vin

The French viticultural appellation areas are the result of an empirical, historical and evolutionary selection which, generally, has consecrated a match between natural factors, grape varieties and viti-vinicultural practices. The notion of terroir is the main basis of the Appellation d’Origine Contrôlée in viticulture. It is based on the one hand on privileged natural factors and on the other hand on the know-how of the winegrowers; the whole allowing the production of a wine endowed with an authenticity and a sensory typicity. Wine-growing practices evolve according to progress in viticulture and oenology, while the natural factors of the terroir are much more stable, with the exception of the vintage. They therefore represent a fundamental pillar of the identity of an appellation vineyard.

Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. This beverage is increasingly produced at industrial scale, but its quality standards remain to be defined. Metabolomics analysis was carried out using FT-ICR-MS to understand the chemical transformations induced by the production phases and the type of tea on

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

Effects of different organic amendments on soil, vine, grape and wine, in a long-term field experiment in Chinon vineyard (France)

In a long-term experiment carried out in Chinon vineyard (37, France) during 23 years, the effects of several organic amendments were studied on soil, vine, grapes and wine. Four main treatments were compared on a calcareous sandy soil: control without organic amendment, dry crushed pruning wood at 2.1.t-1.ha-1.year-1 (D1), cow manure at 10 t-1. ha-1.year-1 (D1) and cow manure applied at 20 t-1.ha-1.year-1 (D2). D1 levels were calculated to fill the annual humus losses by mineralization.