Terroir 2020 banner
IVES 9 IVES Conference Series 9 Effects of soil characteristics on manganese transfer from soil to vine and wine

Effects of soil characteristics on manganese transfer from soil to vine and wine

Abstract

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Methods and Results: Recent pedologic mapping of Beaujolais vineyards has enabled a Mn monitoring network to be set up in order to study Mn transfer from soil to vine and wine. Three soil types were considered. Two of the soils can be very high in EDTA Mn: soils from clays with cherts (soil type 7) and former piedmont deposits with leached soils (soil type 8). The third soil, though low in Mn, is the most important and symbolic of Beaujolais: granitic soil. Fifteen plots of Gamay were monitored during 3 years (2015-2017). Besides soil analysis made from pedologic pits, Mn content of petiole, must and wine (red standard wine-making of 40 kg grapes) were determined, as well as grape yield and biomass (pruning weight). Results show that Mn in petioles is better correlated with Mn in wine than Mn in must. Mn content of wine is little in relation with EDTA Mn in soil. It increases when soil pH or cation exchange capacity decreases.

Conclusions: 

This study has shown that Mn concentration in wine can be naturally very high (maximum of 14.6 g/L in this study). Soils with low cation exchange capacity and/or low pH, i.e. soil types 1 and 8, resulted in higher Mn content in wine. Low cation exchange capacity does not allow a great Mn fixation on clay-humic complex and low pH soil solubilizes metal generally and Mn in particular, so it can be taken up by the vine. Mn petiole content is a very good indicator of Mn content in wine. Maceration in red wine-making is also an element to take into consideration.

Significance and Impact of the Study: Mn content in Beaujolais wine can be very high because of soil type, rather than fraud. It is important to highlight this for wine exportations. Mn content in wine can be reduced by correcting the soil pH.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Jean-Yves Cahurel1, Pierre Martini1*, B. Chatelet2, I. Letessier3

1Institut Français de la Vigne et du Vin, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône, France
2Sicarex Beaujolais, 210 boulevard Vermorel, CS 60320, 69661 Villefranche-sur-Saône Cedex, France
3Sigales, 453 route de Chamrousse, 38410 St Martin d’Uriage, France

Contact the author

Keywords

Manganese, terroir, soil, Beaujolais, vine, wine

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Optimizing vine pruning of Pinot noir and Müller-Thurgau after extreme hail damage

Hail damage can have a major impact on the vine’s physiological growth (defoliation, wood and cane damage) and can lead to significant yield and economic losses.

Evaluation of grape and wine quality according to harvest date, in a tropical region in Northeast Brazil

The Northeast region of Brazil is characterized by a semi-arid climate, has produced tropical wines since twenty years ago. The region is located at 09º 09’ South, 40º 22’ West, 365.5 m

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Potential use of the yeast Starmerella bacillaris as a sustainable biocontrol agent against gray mold disease in viticulture

Pest biocontrol strategies are gaining attention as eco-friendly alternatives to the use of synthetic pesticides, including in viticulture.

The chances for using non-saccharomyces wine yeasts for a sustainable winemaking

Climate changes and the trend towards organic and more sustainable winemaking highlighted the need to use biological methodologies. The reduction in the use of SO2, the need of the reduction of ethanol content of wines and the now need to reduce or eliminate chemical phytosanitary products, have prompted the search for alternative practices.