Terroir 2004 banner
IVES 9 IVES Conference Series 9 Determining sub-appellations in Ontario’s wine regions

Determining sub-appellations in Ontario’s wine regions

Abstract

[English version below]

Vintners Quality Alliance (VQA) Ontario, (Alliance de qualité Vintners) est responsable de l’administration et de l’imposition des normes en liaison avec la qualité du vin, l’appellation d’origine, les variétés de raisin et les méthodes de production. Des vins produits selon les règlements de VQA sont actuellement étiquetés de trois distinctes mais larges régions d’appellation : Niagara Peninsula (péninsule de Niagara), Lake Erie North Shore (Rivage nord du lac Érié) et Pelee Island (Ïle Pelée). Le système actuel de production permet à une seule variété de raisin d’être développée dans plusieurs hautement différents sols, topographies et mésoclimats, avec pour résultat des vins de qualité très variée.
L’objectif du présent projet est d’évaluer les propriétés spécifiques du sol, de la géologie et du climat qui conviennent à certaines variétés, styles et préférences des consommateurs de vin. En outre, le projet vise à identifier les grandes zones ou les sub-appellations qui recèlent une combinaison d’éléments climatiques, du terroir, géologiques et topographiques qui permettraient aux variétés de vignes indiquées d’atteindre un potentiel de maturation optimum, de produire un vin de qualité consistante et d’éviter des dommages excessifs causés par le gel. Dans la conduite de cette recherche, le projet a exploité plusieurs bases de données relatives au sol, à la topographie, au lieu, à la géologie et au climat des régions viticoles de l’Ontario et a utilisé des outils du GIS (système d’information géographique) afin de déterminer la distribution spatiale et l’homogénéité de plusieurs sub-appellations proposées. Un indice composé basé sur plusieurs variables environnementales clés a, donc, été élaboré; les résultats ont été arrêtés pour la région et la frontière de chaque sub-appellation soigneusement définie.

Vintners Quality Alliance (VQA) Ontario is responsible for administering and enforcing standards in connection with wine quality, Appellation of Origin, grape varieties and production methods. Wines produced in accordance with VQA regulations are currently labelled under three distinct but broad viticultural areas (Niagara Peninsula, Lake Erie North Shore and Pelee Island. The present system of production permits a single grape variety to be grown in several highly dissimilar soils, topographies and mesoclimates, resulting in wines that are highly variable in their character.
The objective of this project is to evaluate specific properties of the soil, geology and climate that are suitable for certain varieties, wine styles and consumer preferences. Furthermore, it aims to identify broad zones or sub-appellations that possess a combination of climatic, soil, geological and topographic elements that would enable the designated grape varieties to achieve optimum ripening potential, produce wine of consistent quality and avoid excessive freeze injury. Accordingly, this project uses several databases relating to the soil, topography, location, geology and climate of Ontario’s wine regions along with GIS (Geographic Information System) tools to determine the spatial distribution and homogeneity related to several proposed sub-appellations. A composite index based on several key environmental variables was then constructed; the results were mapped for the region and the boundary of each sub-appellation was carefully defined.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Anthony. B. Shaw

Department of Geography, Brock University, St. Catharines, Ontario, L2S 3A1, Canada

Contact the author

Keywords

Ontario, sub-appellations, wine regions
Ontario, sub-appellations, Alliance de qualité Vintners

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Terroir effects from the reflectance spectra of the canopy of vineyards in four viticultural regions

Knowledge of the reflectance spectrum of grape leaves is important to the identification of grape varieties in images of viticultural regions where several cultivars co-exist.

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.

Effect of soil texture on early bud burst

Notre objectif est d’étudier de façon précise les relations entre la physiologie de la vigne et le sol, en prenant en compte l’effet millésime. Nous avons plus précisément étudier la précocité de débourrement de la vigne (stade D) en fonction de la texture du sol et plus particulièrement de la teneur en éléments grossiers.