Terroir 2004 banner
IVES 9 IVES Conference Series 9 Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

Abstract

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.
The Regional Atmospheric Modeling System (RAMS) was used to perform numerical simulations over the South Western Cape, for a period of 18 days during grape ripening (February 2000). Four 4 nested grids (25 km, 5 km, 1 km and 200 m of resolution) were used, the coarse grid being the computational domain (taking the large scale circulation into account), while the finest resolution (200m) focused on the vineyards south of Stellenbosch (taking the local circulations into account) in order to extrapolate climatic data at a fine scale. Data from the analysis file were extracted and remapped using the climatic thresholds for viticulture, thereby making the meso-scale atmospheric modeling system applicable to grapevine cultivation. Temperatures were grouped into different ranges that would affect the physiology of the vine.
These preliminary results identified locations near Stellenbosch according to the thermal stresses for specific days as well as their potential to meet the climatic requirements for optimum physiological performance of the vine. Three typical weather situations are described at the peak of the photosynthetic performance period (12:00), using results of the two finest grid resolutions (1 km and 200 m). Modeled hourly data were extracted from the analysis file in order to calculate the mean hourly temperature fields for a 16-day period (1-16 Feb 2000) and the mean data were then reintegrated into a GIS as an additional descriptive variable useful for terroir identification.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Bonnardot (1), S. Cautenet (2), H. Beukes (1) and J.J. Hunter (3)

(1) ARC-Institute for Soil, Climate and Water, Private Bag X5026, Stellenbosch 7599, RSA
(2) Laboratoire de Météorologie Physique (UMR 6016-CNRS), Blaise Pascal University, 24 Avenue des Landais, 63177 Aubière, France
(3) ARC Infruitec-Nietvoorbij Institute for Fruit, Vine and Wine, Private Bag, X5026, Stellenbosch 7599, RSA

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: LEVELS AND PATTERNS OBSERVED IN 2020 WINES FROM THE UNITED STATES WEST COAST

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors, described as “smoky”, “bacon”, “campfire” and “ashtray”, often long-lasting and lingering on the palate. In cases of large wildfire events, economic losses for all wine industry actors can be devastating.

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.