Terroir 2004 banner
IVES 9 IVES Conference Series 9 Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

Abstract

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.
The Regional Atmospheric Modeling System (RAMS) was used to perform numerical simulations over the South Western Cape, for a period of 18 days during grape ripening (February 2000). Four 4 nested grids (25 km, 5 km, 1 km and 200 m of resolution) were used, the coarse grid being the computational domain (taking the large scale circulation into account), while the finest resolution (200m) focused on the vineyards south of Stellenbosch (taking the local circulations into account) in order to extrapolate climatic data at a fine scale. Data from the analysis file were extracted and remapped using the climatic thresholds for viticulture, thereby making the meso-scale atmospheric modeling system applicable to grapevine cultivation. Temperatures were grouped into different ranges that would affect the physiology of the vine.
These preliminary results identified locations near Stellenbosch according to the thermal stresses for specific days as well as their potential to meet the climatic requirements for optimum physiological performance of the vine. Three typical weather situations are described at the peak of the photosynthetic performance period (12:00), using results of the two finest grid resolutions (1 km and 200 m). Modeled hourly data were extracted from the analysis file in order to calculate the mean hourly temperature fields for a 16-day period (1-16 Feb 2000) and the mean data were then reintegrated into a GIS as an additional descriptive variable useful for terroir identification.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Bonnardot (1), S. Cautenet (2), H. Beukes (1) and J.J. Hunter (3)

(1) ARC-Institute for Soil, Climate and Water, Private Bag X5026, Stellenbosch 7599, RSA
(2) Laboratoire de Météorologie Physique (UMR 6016-CNRS), Blaise Pascal University, 24 Avenue des Landais, 63177 Aubière, France
(3) ARC Infruitec-Nietvoorbij Institute for Fruit, Vine and Wine, Private Bag, X5026, Stellenbosch 7599, RSA

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis.

Description of the relationship between trunk disease expression and meteorological conditions, irrigations and physiological response in Chardonnay grapevines

In this audio recording of the IVES science meeting 2022, Florence Fontaine (Université de Reims Champagne Ardenne) speaks about grapevine trunk disease. This presentation is based on an original article accessible for free on OENO One.

How climate change can modify the flavor of red Merlot and Cabernet-Sauvignon

he main goal of this research was to identify key aroma compounds linked with the maturity of grapes (ripe and overripe) and involved in grapes and wines with an intense dried fruits aroma. Odoriferous zones reminiscent of these aromas were detected by gas chromatography coupled with olfactometry (GC-O).

Influence of thermal stress on Malbec, Syrah, and Bonarda (Vitis vinifera L.) anthocyanin content and evolution in growing seasons with heatwaves in semi-arid climate (Argentina)

It is known that high temperature influences the synthesis, transformation and degradation of grape anthocyanin (ANT) threatening the quality of grapes and coloured wines.