Terroir 2004 banner
IVES 9 IVES Conference Series 9 Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Abstract

[English version below]

Une étude préliminaire des situations météorologiques journalières a été réalisée pour l’Afrique du Sud et pour les mois de février (période de maturation des raisins dans la Province occidentale du Cap), à l’image de la classification synoptique réalisée aux latitudes tempérées en France (Jones & Davis, 2000), afin d’étudier les relations entre le climat et la viticulture à des latitudes plus basses. Les bulletins météorologiques journaliers du South African Weather Service (SAWS) et les données de surface observées par le SAWS à l’aéroport international du Cap ont été utilisés. Les situations météorologiques synoptiques ont été classées en quatre groupes principaux: la crête de haute pression atlantique sur l’ouest de l’Afrique du Sud, le passage d’une dépression atlantique sur la Province Occidentale du Cap, la prédominance de la dépression ouest, et la crête de haute pression de l’Océan Indien sur l’est du pays. Parmi ces quatre groupes, deux prédominent sur la Province Occidentale du Cap: la crête de haute pression atlantique et de la dépression ouest. Pour les cinq saisons étudiées (1996-2000), la haute pression atlantique représente 48% des cas et la dépression ouest 34%. La fréquence de la haute pression atlantique varie entre 61% (1997 et 1998) et 36% (1999). Comparant ces fréquences avec des recherches antérieures sur l’influence du millésisme et du mésoclimat sur les arômes des vins (Carey et al., 2003), il a été trouvé par example que des conditions plus chaudes en 1998 (résultant du temps ensoleillé associé à la dépression ouest centrée sur la Province du Cap) avaient abouti à la prédominance d’un arôme de fruits tropicaux dans les vins de Sauvignon blanc, et d’un arôme de fruits d’arbre dans les vins de Chardonnay. Il semble que le temps associé aux conditions synoptiques prédominantes aient des implications significatives sur le style de vin. La connaissance de ces conditions et de leur variation au cours de la période végétative aidera ainsi aux études de modélisation climatique avec application pour la viticulture.

A preliminary study of the daily weather situations was performed for February in South Africa (ripening period of the grapes in the Western Cape), similar to the synoptic classification realized for the temperate latitudes in France (Jones & Davis, 2000), in order to focus the study of the relationships between climate and viticulture at lower latitudes. Daily weather bulletins of the South African Weather Service (SAWS) and surface data observed at Cape Town International Airport by the SAWS were used. The synoptic weather situations were classified in four main patterns, namely: the ridging of the Atlantic Ocean High over the western parts of South Africa, the passing of a cold front over the Western Cape, the dominance of the west coast trough, and the ridging of the Indian Ocean High over the eastern parts of South Africa. Of these four groups, two are predominantly occurring over the Western Cape, namely the ridging of the Atlantic Ocean High and the west coast trough. The Atlantic Ocean High occurs on 48% of the days in February over the five seasons (1996-2000) used for the classifications, whilst the trough occurs on 34% of the days. The occurrence of the Atlantic Ocean High varies between 61% (1997 and 1998) and 36% (1999). Comparing these occurrences with previous research on the influence of vintage and meso-climate on wine aroma, it was found, for instance, that warmer conditions (the result of sunny skies associated with the west coast trough situated over the Western Cape) in 1999 resulted in predominant tropical fruit aromas in the Sauvignon blanc wines, and tree fruit aromas in Chardonnay wines. It appears as if the weather associated with dominant synoptic conditions holds significant implications for wine style. Knowledge of these conditions and their variation over the entire season will then help in climatic modelling studies for application to viticulture.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

C.B. du Preez (1), V.M.F. Bonnardot (1) and V.A. Carey (2)

1) ARC-Institute for Soil, Climate and Water, Private Bag X5026, Stellenbosch, 7599, South Africa
2) Department of Viticulture and Enology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening.

Effect of oenological tannins on wine aroma before and after oxidation: a real-time study by coupling sensory (TDS) and chemical (PTR-ToF-MS) analyses

Polyphenols are important compounds involved in many chemical and sensory wine features. In winemaking, adding oenological tannins claims to have positive impacts on wine stability, protection from oxidation and aroma persistence. Polyphenols are antioxidant compounds by either scavenging reactive oxygen and nitrogen species or chelating Fe2+ ions (1). However, as tannins oxidation leads to the formation of highly reactive species (i.e. ortho-quinones), it is still unclear if they have an effective role toward oxidation of wine aromas (2). In this work, we aim at studying the effect of two commercial tannins (proanthocyanidins, ellagitannins) on red wine flavour (mainly aroma) before and after air exposition.

Comparison between satellite and ground data with UAV-based information to analyse vineyard spatio-temporal variability

Currently, the greatest challenge for vine growers is to improve the yield and quality of grapes by minimizing costs and environmental impacts. This goal can be achieved through a better knowledge of vineyard spatial variability. Traditional platforms such as airborne, satellite and unmanned aerial vehicles (UAVs) solutions are useful investigation tools for vineyard site specific management.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.