Terroir 2004 banner
IVES 9 IVES Conference Series 9 Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Abstract

[English version below]

Une étude préliminaire des situations météorologiques journalières a été réalisée pour l’Afrique du Sud et pour les mois de février (période de maturation des raisins dans la Province occidentale du Cap), à l’image de la classification synoptique réalisée aux latitudes tempérées en France (Jones & Davis, 2000), afin d’étudier les relations entre le climat et la viticulture à des latitudes plus basses. Les bulletins météorologiques journaliers du South African Weather Service (SAWS) et les données de surface observées par le SAWS à l’aéroport international du Cap ont été utilisés. Les situations météorologiques synoptiques ont été classées en quatre groupes principaux: la crête de haute pression atlantique sur l’ouest de l’Afrique du Sud, le passage d’une dépression atlantique sur la Province Occidentale du Cap, la prédominance de la dépression ouest, et la crête de haute pression de l’Océan Indien sur l’est du pays. Parmi ces quatre groupes, deux prédominent sur la Province Occidentale du Cap: la crête de haute pression atlantique et de la dépression ouest. Pour les cinq saisons étudiées (1996-2000), la haute pression atlantique représente 48% des cas et la dépression ouest 34%. La fréquence de la haute pression atlantique varie entre 61% (1997 et 1998) et 36% (1999). Comparant ces fréquences avec des recherches antérieures sur l’influence du millésisme et du mésoclimat sur les arômes des vins (Carey et al., 2003), il a été trouvé par example que des conditions plus chaudes en 1998 (résultant du temps ensoleillé associé à la dépression ouest centrée sur la Province du Cap) avaient abouti à la prédominance d’un arôme de fruits tropicaux dans les vins de Sauvignon blanc, et d’un arôme de fruits d’arbre dans les vins de Chardonnay. Il semble que le temps associé aux conditions synoptiques prédominantes aient des implications significatives sur le style de vin. La connaissance de ces conditions et de leur variation au cours de la période végétative aidera ainsi aux études de modélisation climatique avec application pour la viticulture.

A preliminary study of the daily weather situations was performed for February in South Africa (ripening period of the grapes in the Western Cape), similar to the synoptic classification realized for the temperate latitudes in France (Jones & Davis, 2000), in order to focus the study of the relationships between climate and viticulture at lower latitudes. Daily weather bulletins of the South African Weather Service (SAWS) and surface data observed at Cape Town International Airport by the SAWS were used. The synoptic weather situations were classified in four main patterns, namely: the ridging of the Atlantic Ocean High over the western parts of South Africa, the passing of a cold front over the Western Cape, the dominance of the west coast trough, and the ridging of the Indian Ocean High over the eastern parts of South Africa. Of these four groups, two are predominantly occurring over the Western Cape, namely the ridging of the Atlantic Ocean High and the west coast trough. The Atlantic Ocean High occurs on 48% of the days in February over the five seasons (1996-2000) used for the classifications, whilst the trough occurs on 34% of the days. The occurrence of the Atlantic Ocean High varies between 61% (1997 and 1998) and 36% (1999). Comparing these occurrences with previous research on the influence of vintage and meso-climate on wine aroma, it was found, for instance, that warmer conditions (the result of sunny skies associated with the west coast trough situated over the Western Cape) in 1999 resulted in predominant tropical fruit aromas in the Sauvignon blanc wines, and tree fruit aromas in Chardonnay wines. It appears as if the weather associated with dominant synoptic conditions holds significant implications for wine style. Knowledge of these conditions and their variation over the entire season will then help in climatic modelling studies for application to viticulture.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

C.B. du Preez (1), V.M.F. Bonnardot (1) and V.A. Carey (2)

1) ARC-Institute for Soil, Climate and Water, Private Bag X5026, Stellenbosch, 7599, South Africa
2) Department of Viticulture and Enology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Rootstocks have been used in most of the vineyards for over a century. This may seem to be a long period, but it represents only three successive plantations.

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed.

Quantitative assessment of must composition using benchtop NMR spectroscopy: comparative evaluation with FTIR and validation by reference

The foundation of wine production lies in the use of high-quality grapes. To produce wines that meet the highest standards, a fast and reliable analytical assessment of grape quality is essential. Many wineries currently employ Fourier-Transform Middle-Infrared Spectroscopy (FTIR) for this purpose.