Terroir 2004 banner
IVES 9 IVES Conference Series 9 Landscape marketing and landscape reality: what is the relationship? The case of the Loire Valley vineyards

Landscape marketing and landscape reality: what is the relationship? The case of the Loire Valley vineyards

Abstract

This issue poses two questions: the relationship between beauty and taste (is landscape quality an index of wine quality ?), and the gap or the conformity between our image of the “terroir” and the visible reality. The landscape is both an object and a representation. When it is presented as a advertising image, there is inevitably a choice; to show the attractive aspects of the product and to exacerbate them. It results in an aesthetic construction process which is not or no longer faithful to the original landscape. It can be positive when it encourages a discovery; on the other hand, it can be negative when it betrays an identity, and finally it can also lead those managing the territory to modify the identity of their vineyard landscape.
The Chinon vineyard is an example of an approach in the hypothesis that there is a relationship between taste and landscape. The Anjou vineyard is a second example, which characterises a gap between a showcase and a landscape reality.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

F. Joliet

National Institute of Horticulture, 49100 Angers, France
Department of Landscape, National Institute of Horticulture, Angers, France

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Application of zoning for wine production, digitalisation and traceability

Depuis la création des outils d’amélioration et de suivi de la qualité, le CREDO développe et réalise des zonages de potentialités viticoles.

Methodological approach to zoning

An appellation or geographic indication should be based on the terroir concept in order to ensure its integrity. The delimitation of viticultural terroirs must include two consecutive or parallel steps, namely (a) the characterisation of the environment and identification of homogenous environmental units (basic terroir units, natural terroir units) taking all natural factors into account, as well as (b) the characterisation of the viticultural and oenological potential of these units over time.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Identification and evaluation of the winemaking sub-zones of the PDO Amyndeo winegrowing region

Context and purpose of the study. The concept of terroir encompasses the investigation of the physical environment’s influence on grapevine physiology, grape composition, and wine quality, with an emphasis on employing viticultural zoning techniques to systematically characterize and analyze terroirs.

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.