Terroir 2004 banner
IVES 9 IVES Conference Series 9 Landscape marketing and landscape reality: what is the relationship? The case of the Loire Valley vineyards

Landscape marketing and landscape reality: what is the relationship? The case of the Loire Valley vineyards

Abstract

This issue poses two questions: the relationship between beauty and taste (is landscape quality an index of wine quality ?), and the gap or the conformity between our image of the “terroir” and the visible reality. The landscape is both an object and a representation. When it is presented as a advertising image, there is inevitably a choice; to show the attractive aspects of the product and to exacerbate them. It results in an aesthetic construction process which is not or no longer faithful to the original landscape. It can be positive when it encourages a discovery; on the other hand, it can be negative when it betrays an identity, and finally it can also lead those managing the territory to modify the identity of their vineyard landscape.
The Chinon vineyard is an example of an approach in the hypothesis that there is a relationship between taste and landscape. The Anjou vineyard is a second example, which characterises a gap between a showcase and a landscape reality.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

F. Joliet

National Institute of Horticulture, 49100 Angers, France
Department of Landscape, National Institute of Horticulture, Angers, France

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Novel biorefinery step for grape marc valorisation: polysaccharides extraction by subcritical water

The exploitation of food by-products has garnered significant attention over the past few decades, particularly within the framework of the European Green Deal.

Effects Of Injections Of Large Amounts Of Air During Fermentation

Aim: Evaluating the effects of high amount of air injection during red wine fermentation process, on phenolic extraction dynamics, oxygen dissolution, phenolic compounds evolution, and oxidation of red wines.MethodsRed grapes musts were fermented in 100.000 L stainless steel tank, equipped with Parsec SRL “Air mixing” gas injection systems. For this experiment, treatments with two injection regimes, high and low intensity, and high and low daily frequency, were used. Oxygen analyzer was introduced into the tank to evaluate the gas concentration evolution along the fermentation.

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.