Terroir 2004 banner
IVES 9 IVES Conference Series 9 The South African vineyard landscapes: impact on long term cultural practices

The South African vineyard landscapes: impact on long term cultural practices

Abstract

This paper follows the one presented by Saayman at the International Symposium on Landscapes of Vines and Wines in the Loire Valley during July 2003. Where Saayman’s paper described the heritage and development of South African vineyard landscapes, this one focuses on how the landscape is used to assist in decision-making concerning the most important long term practices.
The diversity of South African vineyard landscapes, especially those in the Western Cape, prevents the application of recipes in vineyard practices. In this region, viticulture is practiced on coastal plains, undulating foothills and mountain slopes ranging from below 10m to above 500m altitude. These variations occur over short distances, frequently within one kilometer. A huge variation in soil type and exposure to sea breezes further increase the complexity of the landscape. Evidently the choice of rootstock and scion cultivar is critical and frequently situations are found where more than one rootstock and certainly more than one scion clone must be used in the same block.
Clearly, it is very difficult to create homogeneous vineyard blocks in this diverse landscape. Examples are presented of how to define vineyard block boundaries. Cool sea breezes during summer are responsible to prevent excess leaf and berry temperature increases. The choice of row direction is an important decision to utilize this beneficial wind effect, and where possible SW-NE row directions are used.
To create vineyard blocks on varying soil types is difficult. An important tool in this regard is to stadardise on the distance between rows and to vary the distance between vines in the row according to the vigour potential of the soil. Examples of this, as well as how the landscape affects the choice of the trellising system, are presented.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

E . Archer

Lusan Premium Wines, P O Box 104, Stellenbosch

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century.

Identification and quantification of c-glucosidic ellagitannins and their derivative in red wine aged in oak barrels

The C-glycosidic ellagitannins constitute a subclass of hydrolyzable tannins of remarkable structural diversity. In this work we first achieved the hemisynthesis of flavano-ellagitannins, then we used them to develop a new efficient detection and quantification procedure for the C-glycosidic ellagitannins as well as flavano-ellagitannins.

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

Microwave-assisted maceration and stems addition in Bonarda grapes: effects on wine chemical composition and sensory properties over two vintages

AIM: Bonarda, the second red grape variety in Argentina, produces high yields per hectare generating, in several cases, wines with low levels of quality compounds.

Contaminants in Vitis vinifera L. products: levels and potential risks for human health

Vitis vinifera L. derivatives are susceptible to contamination by biological agents (e.g., bacteria, viruses, fungi), and chemical agents (e.g., heavy metals, persistent organic pollutants).