Terroir 2004 banner
IVES 9 IVES Conference Series 9 The South African vineyard landscapes: impact on long term cultural practices

The South African vineyard landscapes: impact on long term cultural practices

Abstract

This paper follows the one presented by Saayman at the International Symposium on Landscapes of Vines and Wines in the Loire Valley during July 2003. Where Saayman’s paper described the heritage and development of South African vineyard landscapes, this one focuses on how the landscape is used to assist in decision-making concerning the most important long term practices.
The diversity of South African vineyard landscapes, especially those in the Western Cape, prevents the application of recipes in vineyard practices. In this region, viticulture is practiced on coastal plains, undulating foothills and mountain slopes ranging from below 10m to above 500m altitude. These variations occur over short distances, frequently within one kilometer. A huge variation in soil type and exposure to sea breezes further increase the complexity of the landscape. Evidently the choice of rootstock and scion cultivar is critical and frequently situations are found where more than one rootstock and certainly more than one scion clone must be used in the same block.
Clearly, it is very difficult to create homogeneous vineyard blocks in this diverse landscape. Examples are presented of how to define vineyard block boundaries. Cool sea breezes during summer are responsible to prevent excess leaf and berry temperature increases. The choice of row direction is an important decision to utilize this beneficial wind effect, and where possible SW-NE row directions are used.
To create vineyard blocks on varying soil types is difficult. An important tool in this regard is to stadardise on the distance between rows and to vary the distance between vines in the row according to the vigour potential of the soil. Examples of this, as well as how the landscape affects the choice of the trellising system, are presented.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

E . Archer

Lusan Premium Wines, P O Box 104, Stellenbosch

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin.

Characterisation of Sicilian Nero d’Avola grape and wine: A preliminary study

The chemical composition and the sensory characteristics of wine result from dynamic interactions between several factors including grape variety, soil, viticultural techniques, climate conditions, yeasts metabolism, oenological approaches. Recently, Grigg et al.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

How do different oak treatment affect the sensory composition of Chenin blanc wines over time?

Wooden barrels have been the preferred method for oak maturation for wines, but the use of alternative oak products, such as staves and oak chips have increased in South Africa due to lower production costs. This study investigated the effect of different oak products used during fermentation and ageing on the sensory profile, degree of liking and perceived quality of a South African Chenin blanc wine. The different wine treatments included an unoaked tank control wine, wines matured in 5th fill barrels, wines matured in new barrels from three different cooperages, and wines matured in 5th fill barrels with stave inserts from two different cooperages.

Composition and biological potential of grape and wine phenolic compounds

Polyphenols are common in human diets, primarily in plant-derived food and beverages. They influence multiple sensory properties such as aroma, flavour, colour, and taste, such as astringency and bitterness [1]. The major phenolic compounds in grapes and wines are anthocyanins and tannins (proanthocyanidins or condensed tannins).