Terroir 2004 banner
IVES 9 IVES Conference Series 9 The South African vineyard landscapes: impact on long term cultural practices

The South African vineyard landscapes: impact on long term cultural practices

Abstract

This paper follows the one presented by Saayman at the International Symposium on Landscapes of Vines and Wines in the Loire Valley during July 2003. Where Saayman’s paper described the heritage and development of South African vineyard landscapes, this one focuses on how the landscape is used to assist in decision-making concerning the most important long term practices.
The diversity of South African vineyard landscapes, especially those in the Western Cape, prevents the application of recipes in vineyard practices. In this region, viticulture is practiced on coastal plains, undulating foothills and mountain slopes ranging from below 10m to above 500m altitude. These variations occur over short distances, frequently within one kilometer. A huge variation in soil type and exposure to sea breezes further increase the complexity of the landscape. Evidently the choice of rootstock and scion cultivar is critical and frequently situations are found where more than one rootstock and certainly more than one scion clone must be used in the same block.
Clearly, it is very difficult to create homogeneous vineyard blocks in this diverse landscape. Examples are presented of how to define vineyard block boundaries. Cool sea breezes during summer are responsible to prevent excess leaf and berry temperature increases. The choice of row direction is an important decision to utilize this beneficial wind effect, and where possible SW-NE row directions are used.
To create vineyard blocks on varying soil types is difficult. An important tool in this regard is to stadardise on the distance between rows and to vary the distance between vines in the row according to the vigour potential of the soil. Examples of this, as well as how the landscape affects the choice of the trellising system, are presented.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

E . Archer

Lusan Premium Wines, P O Box 104, Stellenbosch

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Sustainable wine industry: supercritical fluid extraction as key technology for biorefinery enhancement

Supercritical carbon dioxide (sc-CO2) extraction is an environmentally friendly technology employed for bioactive compounds recovery from various natural sources and biomasses. The advantages of sc-co2 extraction include its selectivity, relatively mild operating conditions, which minimize the degradation of sensitive compounds, and the absence of potentially harmful organic solvents.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Following its approval in 2013 by Agroscope, Divico became the first interspecific grape variety in Switzerland with high resistance to downy mildew (Plasmopara viticola) and grey rot (Botrytis cinerea), and medium resistance to powdery mildew (Uncinula nectator). Extremely riche in color, Divico grapes showed great enological potential to different styles of wine. Quickly, many wine growers were interested in planting this promising variety. Many of its potential are to be explored in the coming years.