Terroir 2004 banner
IVES 9 IVES Conference Series 9 The effect of terroir zoning on pomological, chemical and aromatic composition of Muscat d’Alexandrie grapevine variety cultivated in Tunisia

The effect of terroir zoning on pomological, chemical and aromatic composition of Muscat d’Alexandrie grapevine variety cultivated in Tunisia

Abstract

[English version below]

La composition du raisin de la variété Muscat d’Alexandrie a été étudiée dans trois terroirs différents au Nord-Est de la Tunisie (RafRaf, Baddar et Kelibia).
Des échantillons de raisins ont été récoltés à maturité industrielle durant les saisons 2001 et 2002 dans les trois régions citées. Les paramètres pomologiques (poids moyen de la grappe et de la baie) et physico-chimiques (acidité totale, pH, densité, degré Brix et indice des polyphénols totaux) ont été immédiatement mesurés. Les composés libres et liés de l’arôme ont été analysés par chromatographie en phase gazeuse (C.P.G.) équipée d’un Détecteur à Flamme d’Ionisation (FID).
Les caractéristiques pomologiques et physico-chimiques n’ont pas subi une modification importante dans les différentes régions étudiées. Cependant, l’effet significatif du terroir se reflète essentiellement sur la composition de la baie en arôme. Bien que la somme des trois monoterpénols (MT; linalol+nérol+géraniol) a toujours été comprise dans le seuil de perception de la note muscatée, une nette différence au niveau de leur distribution a été constatée. Linalol et geraniol sont les composés d’arôme les plus sensibles aux changements des conditions du milieu.
Selon l’année (2001 et 2002) et le terroir, la fraction liée des composés d’arôme est de 4 à 6 fois plus importante que la fraction libre.

The effect of terroir zoning on the pomological, chemical and aromatic composition has been studied on the Muscat d’Alexandrie grapevine variety over two years 2001 and 2002. This variety was cultivated in three terroirs (RafRaf, Baddar and Kelibia) in the North-East of Tunisia.
Muscat d’Alexandrie from each terroir was randomly harvested at commercial maturity, in 2001 and 2002. Pomological parameters (bunch and berry mean weights) and chemical characteristics (total acidity, pH, density, Brix degree and total polyphenol index) have been immediately measured. The aroma free and bound fractions were analyzed using CPG equipped by FID detector.
The results showed that the pomological and chemical parameters were the less affected by the terroir zoning. Nevertheless, zoning affected mainly the aromatic composition of the berry. Although, the global value MT of the free monoterpenols (linalool+nerol+geraniol) was included in the Muscat aroma perception interval, the distribution of the concentration of each changed from region to another. Indeed, linalool and geraniol compounds were the most sensitive to environmental changes and consequently terroirs.
During 2001 and 2002 and according to the terroir, the glycosidically bound fraction has been increased 4 to 6 times.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Souid I. (1), Zemni H. (1), Ben Salem A. (1) , Fathalli N. (1) , Mliki A. (1), Hammami M. (2), Hellali R. (3) and A. Ghorbel(1)

(1) Laboratoire de Physiologie Moléculaire de la Vigne. Institut National de Recherche Scientifique et Technique. BP 95. Hammam Lif 2050. Tunisia
(2) Laboratoire de Spectrométrie de Masse. Faculté de Médecine de Monastir 5019
(3) Laboratoire d’Arboriculture Fruitière. Institut National Agronomique de Tunis. 43 Av. Charles Nicolle. 1082 Cité Mahrajène. Tunis

Contact the author

Keywords

Muscat d’Alexandrie, jus de raisin, arôme, terroir, Tunisie

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

Evolution of the crown procyanidins during wine making and aging in bottle

Condensed tannins are widely distributed in plant‐derived foods and beverages like grape, red wine, nuts, tea, apples and chocolate in which they contribute to multiple sensorial properties such as flavor, color, and taste (astringency and bitterness). During the wine making process,

Methyl Jasmonate Versus Nano-Methyl Jasmonate: Effect On The Stilbene Content In Monastrell Variety

Stilbenes, a kind of non-flavonoid phenolic compounds, have been reported to be responsible for various beneficial effects. Their biological properties include antibacterial and antifungal effects, as well as cardioprotective, neuroprotective and anticancer actions (Guerrero et al. 2009).Several strategies can be used to increase stilbene content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).

Techniques to study graft union formation in grapevine

Grapevines are grown grafted in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which were primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, grapevine rootstocks were also selected in relation their resistance to various abiotic stress conditions. Future rootstocks should have the potential to adapt viticulture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite to be able to use them with all the varieties. The objective of this work is to develop quantitative techniques to characterize graft union formation in grapevine.

Heatwaves and grapevine yield in the Douro region, crop model simulations

Heatwaves or extreme heat events can be particularly harmful to agriculture. Grapevines grown in the Douro winemaking region are particularly exposed to this threat, due to the specificities of the already warm and dry climatic conditions. Furthermore, climate change simulations point to an increase in the frequency of occurrence of these extreme heat events, therefore posing a major challenge to winegrowers in the Mediterranean type climates. The current study focuses on the application of the STICS crop model to assess the potential impacts of heatwaves in grapevine yields over the Douro valley winemaking region. For this purpose, STICS was applied to grapevines using high-resolution weather, soil and terrain datasets over the Douro. To assess the impact of heatwaves, the weather dataset (1989-2005) was artificially modified, generating periods with anomalously high temperatures (+5 ºC), at certain onset dates and with specific durations (from 5 to 9 days). The model was run with this modified weather dataset and results were compared to the original unmodified runs. The results show that heatwaves can have a very strong impact on grapevine yields, strongly depending on the onset dates and duration of the heatwaves. The highest negative impacts may result in a decrease in the yield by up to -35% in some regions. Despite some uncertainties inherent to the current modelling assessment, the present study highlights the negative impacts of heatwaves on viticultural yields in the Douro region, which is critical information for stakeholders within the winemaking sector for planning suitable adaptation measures.