Terroir 2004 banner
IVES 9 IVES Conference Series 9 The effect of terroir zoning on pomological, chemical and aromatic composition of Muscat d’Alexandrie grapevine variety cultivated in Tunisia

The effect of terroir zoning on pomological, chemical and aromatic composition of Muscat d’Alexandrie grapevine variety cultivated in Tunisia

Abstract

[English version below]

La composition du raisin de la variété Muscat d’Alexandrie a été étudiée dans trois terroirs différents au Nord-Est de la Tunisie (RafRaf, Baddar et Kelibia).
Des échantillons de raisins ont été récoltés à maturité industrielle durant les saisons 2001 et 2002 dans les trois régions citées. Les paramètres pomologiques (poids moyen de la grappe et de la baie) et physico-chimiques (acidité totale, pH, densité, degré Brix et indice des polyphénols totaux) ont été immédiatement mesurés. Les composés libres et liés de l’arôme ont été analysés par chromatographie en phase gazeuse (C.P.G.) équipée d’un Détecteur à Flamme d’Ionisation (FID).
Les caractéristiques pomologiques et physico-chimiques n’ont pas subi une modification importante dans les différentes régions étudiées. Cependant, l’effet significatif du terroir se reflète essentiellement sur la composition de la baie en arôme. Bien que la somme des trois monoterpénols (MT; linalol+nérol+géraniol) a toujours été comprise dans le seuil de perception de la note muscatée, une nette différence au niveau de leur distribution a été constatée. Linalol et geraniol sont les composés d’arôme les plus sensibles aux changements des conditions du milieu.
Selon l’année (2001 et 2002) et le terroir, la fraction liée des composés d’arôme est de 4 à 6 fois plus importante que la fraction libre.

The effect of terroir zoning on the pomological, chemical and aromatic composition has been studied on the Muscat d’Alexandrie grapevine variety over two years 2001 and 2002. This variety was cultivated in three terroirs (RafRaf, Baddar and Kelibia) in the North-East of Tunisia.
Muscat d’Alexandrie from each terroir was randomly harvested at commercial maturity, in 2001 and 2002. Pomological parameters (bunch and berry mean weights) and chemical characteristics (total acidity, pH, density, Brix degree and total polyphenol index) have been immediately measured. The aroma free and bound fractions were analyzed using CPG equipped by FID detector.
The results showed that the pomological and chemical parameters were the less affected by the terroir zoning. Nevertheless, zoning affected mainly the aromatic composition of the berry. Although, the global value MT of the free monoterpenols (linalool+nerol+geraniol) was included in the Muscat aroma perception interval, the distribution of the concentration of each changed from region to another. Indeed, linalool and geraniol compounds were the most sensitive to environmental changes and consequently terroirs.
During 2001 and 2002 and according to the terroir, the glycosidically bound fraction has been increased 4 to 6 times.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Souid I. (1), Zemni H. (1), Ben Salem A. (1) , Fathalli N. (1) , Mliki A. (1), Hammami M. (2), Hellali R. (3) and A. Ghorbel(1)

(1) Laboratoire de Physiologie Moléculaire de la Vigne. Institut National de Recherche Scientifique et Technique. BP 95. Hammam Lif 2050. Tunisia
(2) Laboratoire de Spectrométrie de Masse. Faculté de Médecine de Monastir 5019
(3) Laboratoire d’Arboriculture Fruitière. Institut National Agronomique de Tunis. 43 Av. Charles Nicolle. 1082 Cité Mahrajène. Tunis

Contact the author

Keywords

Muscat d’Alexandrie, jus de raisin, arôme, terroir, Tunisie

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

The sulphur dioxide (SO2) is the most widely used additive in the wine industry because of its preservative action. However, in recent years the number of wineries that produce wines without SO2 has increased significantly because its allergenic character.

Geospatial technologies in spatially defined viticulture: case study of a vineyard with Agiorgitiko variety in Koutsi, Nemea, Greece

Geospatial technologies have significant contribution to viticulture, especially in small-scale vineyards, which require precise management. Geospatial data collected by modern technologies, such as Unmanned Aerial Vehicle (UAV) and satellite imagery, can be processed by modern software and easily be stored and transferred to GIS environments, highlighting important information about the health of vine plants, the yield of grapes and the wine, especially in wine-making varieties. The identification of field variability is very important, particularly for the production of high quality wine. Modern geospatial data management technologies are used to achieve an easy and effortless localization of the fields’ variability.

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.