Terroir 2004 banner
IVES 9 IVES Conference Series 9 Shoot positioning: effect on physiological, vegetative and reproductive parameters

Shoot positioning: effect on physiological, vegetative and reproductive parameters

Abstract

[English version below]

On a étudié durant deux saisons de croissance (2002/2003 et 2003/2004) l’effet de l’orientation vertical des rameaux sur les paramètres physiologiques, végétatifs et reproductifs dans la région de Stellenbosch dans un vignoble du cépage Merlot sur 99 R conduite à espalier et taillé a cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m. L’irrigation a été appliquée quand la baie avait la dimension d’un pois et a la véraison.
Les rameaux ont été placés verticalement à la nouaison ,à la dimension d’un pois de la baie, à la véraison et trois semaines après la véraison. Après leur placement vertical les rameaux ont été tout de suite écimés à 100-155cm. Le positionnement vertical et l’écimage des rameaux n’ont pas eu aucun effet sur la croissance des entre cœurs, mais ils ont eu un effet fort sur la position de les entre coeurs sur la longueur du rameau principal. Depuis la nouaison et jusqu’à la véraison on a eu une bonne distribution de la lumière qui a favorit l’uniformité de la maturation et la qualité du raisin. Le potentiel hydrique foliaire et le potentiel de tige des feuilles basales et apicales et l’activité photosynthétique sont diminués durant le cycle végétatif. Une régression significative a été trouvée pour les feuilles apicales entre la tige et le potentiel de tige et le potentiel hydrique foliaire.
Le placement vertical des rameaux jusqu’à la véraison a induit un’augmentation significative du degré °Brix, du contenu d’acide malique et du saccharose, et une faible diminution de l’acide tartrique. Le niveau du glucose a été le plus haute dans les traitements dimension d’un pois et véraison. Aucune différence significative entre les traitements a été trouve pour le pH. L’époque de traitement pre-véraison a amélioré la couleur de la peau de la baie.
Aucune difficulté pratique a été vérifiée quand les rameaux ont été manipulés dans les première époque tandis que à les époques véraison et post-véraison on a eu difficulté à manipuler les rameaux a cause de la lignification et de la présence des vrilles. Les grappes sont très sensibles aux dommages et à la pourriture. Il s’agit de considérations importantes dans les terroirs où la gestion soigneuse du vignoble est très difficile.

The effect of vertical shoot positioning and topping at different times during two growth seasons (2002/03 and 2003/04) on physiological, vegetative and reproductive parameters was investigated in a vertically trellised Merlot/R99 vineyard located in the Stellenbosch area. Vines were spaced 2.7 x 1.5 m in north-south orientated rows. Micro-sprinkler irrigation was applied at pea size berry and at véraison stages. Shoots were positioned at berry set, pea size, véraison and post-véraison stages (3 weeks after véraison). After being positioned, they were immediately topped. Before positioning the canopy was in a “natural” condition with shoots hanging freely. Soil water typically varied according to the progress in the season and with soil depth, decreasing towards the end of the season and increasing with depth. The primary shoot length of the positioned shoots was on average approximately 100 – 115 cm, being restricted by the relatively low trellising system. Shoot positioning and topping had no marked effect on the growth of secondary shoots, but they had a noticeable effect on the position of secondary shoots along the length of the primary shoots. Pea-size shoot positioning induced slightly lower light conditions in the bunch zone, because of the low position of secondary shoot development on primary shoots. In spite of this, pre-vèraison shoot positioning treatments allowed good all-round light distribution, which would promote uniform bunch ripening and grape quality. The basal and apical stem and leaf water potential and photosynthetic activity decreased during the season as the leaves aged and the plants lost water. A significant correlation was found for apical leaves between stem and leaf water potential. 
Earlier shoot positioning (up to véraison) significantly increased the °Balling level of the must. Early shoot positioning (up to véraison) increased malic acid and sucrose contents, whereas tartaric acid contents were slightly reduced and glucose contents were higher in pea size and véraison treatments. No significant differences between treatments were found for must pH. The earlier shoots were positioned, the more water was lost by the skins, resulting in a concentration of skin contents. Pre-véraison shoot positioning and topping improved the colour of the skins. 
No practical difficulty was experienced when shoots were positioned early in the season, i.e. at berry set and pea size stages, whereas at and after véraison proper vertical positioning was primarily restricted by shoot lignification and the tightness of tendrils on the wires. Bunches were also very sensitive to damage, which led to bunch rot and a reduction in yield. These are important considerations in terroirs where timely management is difficult. 

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A. Pisciotta (1), R. Di Lorenzo (1) M.G.Barbagallo (1), C.G. Volschenk (2) & J.J. Hunter (2)

(1) Dipartimento di Colture Arboree, Università degli Studi di Palermo, Viale delle Scienze 11, 90128 – Palermo, Sicily, Italy
(2) ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Merlot, shoot positioning, vegetative growth, reproductive growth, photosynthesis, water potential, light interception, grape composition

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Assessment of alternative sweetening methods for dealcoholized wine

In recent years, there has been an increase in demand for non-alcoholic wine with an ethanol content of less than 0.5% v/v. The dealcoholization process can take place by various methods, such as vacuum distillation or membrane technologies like osmotic distillation. Compared to distillation, membrane systems often require multiple passes or a combination of multiple separation methods. Complete or almost complete removal of ethanol significantly changes the sensory characteristics of wine.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.