Terroir 2004 banner
IVES 9 IVES Conference Series 9 The application of soil biological indicators to support soil conservation practices and landscape quality in viticulture

The application of soil biological indicators to support soil conservation practices and landscape quality in viticulture

Abstract

[English version below]

Le but de notre travail a été d’étudier l’influence de différents systèmes de la gestion du sol en viticulture sur des paramètres biologiques de sol comme indicateurs de la protection et de la qualité du sol. La conservation de sol est indispensable pour une viticulture durable et la protection du terroir. Nos résultats ont montré, que la matière organique et la biomasse microbienne du sol sont des indicateurs pour l’efficacité des techniques de conservation du sol. L’activité biologique du sol peut être soutenu par l’enherbement ou l’amendement des résidus organique. Même des herbicides de post-levée, utilisés dans une manière raisonnable, peuvent être utilisés pour les buts de la conservation du sol. Des systèmes efficaces de la gestion du sol et une qualité du sol élevée sont un préalable à la protection du paysage et l’environnement. La qualité de paysage traite l’aspect visuel de l’environnement. Les aspects de la qualité du paysage devraient devenir plus importants comme composant du terroir.

The aim of our work was to investigate the influence of different soil management systems in viticulture on soil biological parameters as indicators for soil conservation and soil quality. Soil conservation is indispensable for a sustainable viticulture and the protection of the terroir.
Our results showed, that soil organic matter and soil microbial biomass are good indicators for the efficacy of soil conservation techniques. Soil biological activity can by supported by green cover or application of organic material. Also post-emergence herbicides, used in a reasonable way, can be employed for the goals of soil conservation. Efficient soil management systems and high soil quality are a prerequisite for the protection of the landscape and the environment. Landscape quality deals with the visual appearance of the environment. A high quality of the landscape should become more important as a component of the terroir
.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

S. Reuter

Dienstleistungszentrum Ländlicher Raum, DLR Rheinpfalz, Breitenweg 71, D-67435 Neustadt a.d. Weinstraße, Germany

Contact the author

Keywords

 Soil management, soil biology, soil conservation, terroir, landscape

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

Oenological performances of new white grape varieties

The wine industry works to minimize pesticides and adapt to climate change. Breeding programs have developed disease-resistant grape varieties, particularly against downy and powdery mildew, to minimize pesticide applications [1]. However, their enological potential remains underexplored.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, leading to challenges in maintaining wine sensory quality.

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.