Terroir 2004 banner
IVES 9 IVES Conference Series 9 Determination of the maturity status of white grape berries (Vitis vinifera L. cv Chenin) through physical measurements

Determination of the maturity status of white grape berries (Vitis vinifera L. cv Chenin) through physical measurements

Abstract

[English version below]

La véraison, stade intermédiaire du développement de la baie de raisin, correspond au début de la maturation. Aux modifications de coloration de la pellicule sont associées une perte de fermeté, une diminution de l’acidité et une augmentation des teneurs en sucres et pigments ainsi que du volume de la baie. Le stade de véraison des cépages blancs reste difficile à apprécier visuellement. Son évaluation par palpation est subjective et donc sujette à caution. Une méthode non destructive d’analyse de la fermeté des baies (Cabernet franc) a été mise au point dans une précédente étude, utilisant des tests de compression. Cette méthode, qui permet de relier la fermeté à la composition biochimique a été étendue au Chenin. Des baies issues de deux parcelles bien caractérisées au plan des facteurs naturels du milieu (géo-pédologie) et du comportement de la vigne, ont fait l’objet de tests de compression et d’analyses biochimiques au cours de 10 prélèvements successifs couvrant la période 2 semaines avant véraison jusqu’à 2 semaines après véraison. Les résultats montrent que, comme dans le cas du Cabernet franc, le taux de compression à 20% de la hauteur de la baie ainsi que les classes de pression utilisées sont pertinentes. La méthode permet de déterminer avec précision une date de mi-véraison physique, de mettre en évidence le niveau d’hétérogénéité des baies au sein de chaque lot et des différences de précocité entre parcelles. Par ailleurs, une bonne corrélation entre la perte de fermeté des baies et leurs teneurs en sucres et acide malique peut être obtenue dès que le processus de véraison est amorcé. Ces résultats permettent d’envisager le suivi « in situ » de l’évolution de la maturation des baies, de manière dynamique et non destructive.

Veraison represents an intermediate stage in development of grape berries, coinciding with the onset of the maturation process. The change in skin coloration is associated with a loss of firmness, a reduction of acidity and an increase in sugar and pigment contents, as well as berry size. For white berries, veraison is difficult to determine on a visual basis. Its evaluation through finger pressure is too subjective to be used as a routine technique. In a previous work, compression tests realized with Cabernet franc berries allowed to develop a non destructive method to analyse the firmness of the berries in relation with their chemical composition ; this method is now extended to the Chenin variety. Samples of berries were taken from two experimental plots for compression tests and chemical analyses, at ten picking dates, from two weeks before veraison until two weeks after. The plots were chosen according to their geo-pedological characterisation and its consequences on the behaviour of the vine. Results indicated that the compression ratio of 20% of the berry diameter and the pressure classes determined for Cabernet franc were also accurate for Chenin. The method allowed to determine with precision the physical mid-veraison stage (loss of firmness for 50% of the berries) and brought to the fore the level of heterogeneity of berries and the differences between plots in terms of earliness. High correlations between berry firmness and both sugar and malic acid contents were obtained as soon as the veraison process initiated. These results will enable to follow in situ the evolution of the grape berry maturation, on a dynamic non destructive way.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

G. Barbeau, Y. Cadot, F. Neau

INRA, Unité Expérimentale Vigne et Vin, 42, rue Georges Morel, BP 57, 49071 Beaucouzé cedex (France)

Contact the author

Keywords

Vitis vinifera, chenin, terroirs, firmness, heterogeneity, veraison, maturation

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

International Terroir Congress: 14 years of scientific proceedings!

We are a partner of the International Terroir Congress. For 4 months, our team has been putting the congress archives online. We are very proud to announce that the 14 years of archives are finally available. All archives of the International Terroir Congress are...