Terroir 2004 banner
IVES 9 IVES Conference Series 9 Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Abstract

Several trunk diseases cause decline and premature dieback of grapevines. In vineyards, these pathogens gain entry into plants through unprotected wounds. Wounds are also frequently infected during the propagation stages. The pathogens survive in infected plants in a latent form and cause disease in older grapevines or in plants that are subjected to stress. No curative management strategies are known and disease prevention strategies focus on the protection of wounds in nurseries and vineyards. The aim of this study was to determine the effect of different chemical and biological sanitising treatments of propagation material on infection of trunk disease pathogens.
Rootstocks (101-14 Mgt) and grafts (Shiraz) were drench-treated in captan, benomyl, bronocide, Sporekill, Bio-sterilizer, chinosol and Trichoflow prior to cold storage (1 h drench), prior to grafting (10 min drench) and prior to planting (5 s dip). Vines were bench-grafted by hand or Omega machine and cold or hot callused, respectively. For the hand-grafted treatment, half the number of plants was grafted with sterilised hands on sterilised tables, while the other half was grafted under standard conditions (dirty hands and tables). The treated, grafted rootstocks were planted in a field nursery in Wellington and grown for 7-8 months before it was uprooted. Take percentages, root and shoot mass, as well as the incidence of Botryosphaeria, Cylindrocarpon, Phomopsis, Phaeomoniella + Phaeoacremonium spp., total pathogen and Trichoderma in graft unions and basal ends of rootstocks of uprooted vines were determined.
Take percentages for most treatments did not differ significantly. None of the treatments impacted negatively on vine growth. Benomyl, Sporekill, captan and bronocide were consistently most effective in reducing the incidence of pathogens in the graft union and in the basal end of the rootstock. Bronocide did, however, cause a reduction in take percentage. Trichoflow, chinosol and Bio-sterilizer were not as effective and marginal to no reductions were observed. Significantly more Petri disease causing pathogens were isolated from the graft unions of cold callus vines, compared to the hot callus vines. This might be attributed to the bigger grafting wounds (hand grafted vs. Omega bench grafted), and might also indicate that these pathogens infect graft union wounds during the propagation process.
By isolating important trunk disease causing pathogens from the graft unions and basal ends of rootstocks of certified nursery vines, this study has clearly showed that sanitation practices during the propagation process is of utmost importance. Benomyl, Sporekill and captan provided the best protection against trunk disease pathogens. However, integrated treatment strategies with environmentally safe products should be considered in order to comply with environmental laws.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P.H. Fourie (1) and F Halleen (2)

(1) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
(2) Disease Management, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Red wines from southwest France, Lebanon and South Korea: study of phenolic composition and antioxidant and biological activities according to grape varieties and winemaking processes

The phenolic compounds present in the wine are responsible for reducing the risk of developing chronic diseases (cardiovascular, cancer, diabetes, Alzheimer …) because of their antioxidant activities and the presence of nutraceutical molecules with targeted biological activities. Polyphenols not only contribute to the “French paradox” but also contribute to give the wine its color, structure, aroma and allow a long-term preservation.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

Monitoring the tawny port wine aging process using precision enology

AIM: Tawny Port wine is produced in the Douro Demarcated Region by blending several fortified wines in different aging stages. During the aging process in small wood barrels, the red wine color progressively develops into tawny, medium tawny, or light tawny.

Aroma compounds and physical-chemical characterization of grapes and wines from Mount Etna “relic-jewels” vine genotypes

In the last few decades, minor vine genotypes traditionally cultivated on the Mount Etna slopes, have attracted the interest of both researchers and vine growers, as they offer an interesting oenological profile.

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms.