Terroir 2004 banner
IVES 9 IVES Conference Series 9 Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Abstract

Several trunk diseases cause decline and premature dieback of grapevines. In vineyards, these pathogens gain entry into plants through unprotected wounds. Wounds are also frequently infected during the propagation stages. The pathogens survive in infected plants in a latent form and cause disease in older grapevines or in plants that are subjected to stress. No curative management strategies are known and disease prevention strategies focus on the protection of wounds in nurseries and vineyards. The aim of this study was to determine the effect of different chemical and biological sanitising treatments of propagation material on infection of trunk disease pathogens.
Rootstocks (101-14 Mgt) and grafts (Shiraz) were drench-treated in captan, benomyl, bronocide, Sporekill, Bio-sterilizer, chinosol and Trichoflow prior to cold storage (1 h drench), prior to grafting (10 min drench) and prior to planting (5 s dip). Vines were bench-grafted by hand or Omega machine and cold or hot callused, respectively. For the hand-grafted treatment, half the number of plants was grafted with sterilised hands on sterilised tables, while the other half was grafted under standard conditions (dirty hands and tables). The treated, grafted rootstocks were planted in a field nursery in Wellington and grown for 7-8 months before it was uprooted. Take percentages, root and shoot mass, as well as the incidence of Botryosphaeria, Cylindrocarpon, Phomopsis, Phaeomoniella + Phaeoacremonium spp., total pathogen and Trichoderma in graft unions and basal ends of rootstocks of uprooted vines were determined.
Take percentages for most treatments did not differ significantly. None of the treatments impacted negatively on vine growth. Benomyl, Sporekill, captan and bronocide were consistently most effective in reducing the incidence of pathogens in the graft union and in the basal end of the rootstock. Bronocide did, however, cause a reduction in take percentage. Trichoflow, chinosol and Bio-sterilizer were not as effective and marginal to no reductions were observed. Significantly more Petri disease causing pathogens were isolated from the graft unions of cold callus vines, compared to the hot callus vines. This might be attributed to the bigger grafting wounds (hand grafted vs. Omega bench grafted), and might also indicate that these pathogens infect graft union wounds during the propagation process.
By isolating important trunk disease causing pathogens from the graft unions and basal ends of rootstocks of certified nursery vines, this study has clearly showed that sanitation practices during the propagation process is of utmost importance. Benomyl, Sporekill and captan provided the best protection against trunk disease pathogens. However, integrated treatment strategies with environmentally safe products should be considered in order to comply with environmental laws.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P.H. Fourie (1) and F Halleen (2)

(1) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
(2) Disease Management, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Climate, Viticulture, and Wine … my how things have changed!

The planet is warmer than at any time in our recorded past and increasing greenhouse emissions and persistence in the climate system means that continued warming is highly likely. Climate change has already altered the basic framework of growing grapes for wine production worldwide and will likely continue to do so for years to come. The wine sector can continue to play an important role in leading the agricultural sector in addressing climate change. From developing on…

Circular viticulture: transforming grapevine waste into sustainable fibers

Annually, around 31.95 million tonnes of grapevine prunings are produced worldwide as agricultural waste.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.