Terroir 2004 banner
IVES 9 IVES Conference Series 9 Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Abstract

Several trunk diseases cause decline and premature dieback of grapevines. In vineyards, these pathogens gain entry into plants through unprotected wounds. Wounds are also frequently infected during the propagation stages. The pathogens survive in infected plants in a latent form and cause disease in older grapevines or in plants that are subjected to stress. No curative management strategies are known and disease prevention strategies focus on the protection of wounds in nurseries and vineyards. The aim of this study was to determine the effect of different chemical and biological sanitising treatments of propagation material on infection of trunk disease pathogens.
Rootstocks (101-14 Mgt) and grafts (Shiraz) were drench-treated in captan, benomyl, bronocide, Sporekill, Bio-sterilizer, chinosol and Trichoflow prior to cold storage (1 h drench), prior to grafting (10 min drench) and prior to planting (5 s dip). Vines were bench-grafted by hand or Omega machine and cold or hot callused, respectively. For the hand-grafted treatment, half the number of plants was grafted with sterilised hands on sterilised tables, while the other half was grafted under standard conditions (dirty hands and tables). The treated, grafted rootstocks were planted in a field nursery in Wellington and grown for 7-8 months before it was uprooted. Take percentages, root and shoot mass, as well as the incidence of Botryosphaeria, Cylindrocarpon, Phomopsis, Phaeomoniella + Phaeoacremonium spp., total pathogen and Trichoderma in graft unions and basal ends of rootstocks of uprooted vines were determined.
Take percentages for most treatments did not differ significantly. None of the treatments impacted negatively on vine growth. Benomyl, Sporekill, captan and bronocide were consistently most effective in reducing the incidence of pathogens in the graft union and in the basal end of the rootstock. Bronocide did, however, cause a reduction in take percentage. Trichoflow, chinosol and Bio-sterilizer were not as effective and marginal to no reductions were observed. Significantly more Petri disease causing pathogens were isolated from the graft unions of cold callus vines, compared to the hot callus vines. This might be attributed to the bigger grafting wounds (hand grafted vs. Omega bench grafted), and might also indicate that these pathogens infect graft union wounds during the propagation process.
By isolating important trunk disease causing pathogens from the graft unions and basal ends of rootstocks of certified nursery vines, this study has clearly showed that sanitation practices during the propagation process is of utmost importance. Benomyl, Sporekill and captan provided the best protection against trunk disease pathogens. However, integrated treatment strategies with environmentally safe products should be considered in order to comply with environmental laws.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P.H. Fourie (1) and F Halleen (2)

(1) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
(2) Disease Management, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.

Exploring the potential of agrivoltaics in German vineyards: A GIS-based assessment

The growing demand for renewable energy and sustainable agricultural practices has highlighted the potential of agrivoltaics (Agri-PV) as a promising solution, particularly in the context of German viticulture.

South American Creole grapevines: new varieties identified in the Caravelí Valley (Peru) and their aromatic profile

The valley of Caravelí (Peru) received the first vine plants in colonial times and the tradition of cultivation is maintained thanks to its terroir and artisanal techniques.

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].