Terroir 2004 banner
IVES 9 IVES Conference Series 9 Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Abstract

Several trunk diseases cause decline and premature dieback of grapevines. In vineyards, these pathogens gain entry into plants through unprotected wounds. Wounds are also frequently infected during the propagation stages. The pathogens survive in infected plants in a latent form and cause disease in older grapevines or in plants that are subjected to stress. No curative management strategies are known and disease prevention strategies focus on the protection of wounds in nurseries and vineyards. The aim of this study was to determine the effect of different chemical and biological sanitising treatments of propagation material on infection of trunk disease pathogens.
Rootstocks (101-14 Mgt) and grafts (Shiraz) were drench-treated in captan, benomyl, bronocide, Sporekill, Bio-sterilizer, chinosol and Trichoflow prior to cold storage (1 h drench), prior to grafting (10 min drench) and prior to planting (5 s dip). Vines were bench-grafted by hand or Omega machine and cold or hot callused, respectively. For the hand-grafted treatment, half the number of plants was grafted with sterilised hands on sterilised tables, while the other half was grafted under standard conditions (dirty hands and tables). The treated, grafted rootstocks were planted in a field nursery in Wellington and grown for 7-8 months before it was uprooted. Take percentages, root and shoot mass, as well as the incidence of Botryosphaeria, Cylindrocarpon, Phomopsis, Phaeomoniella + Phaeoacremonium spp., total pathogen and Trichoderma in graft unions and basal ends of rootstocks of uprooted vines were determined.
Take percentages for most treatments did not differ significantly. None of the treatments impacted negatively on vine growth. Benomyl, Sporekill, captan and bronocide were consistently most effective in reducing the incidence of pathogens in the graft union and in the basal end of the rootstock. Bronocide did, however, cause a reduction in take percentage. Trichoflow, chinosol and Bio-sterilizer were not as effective and marginal to no reductions were observed. Significantly more Petri disease causing pathogens were isolated from the graft unions of cold callus vines, compared to the hot callus vines. This might be attributed to the bigger grafting wounds (hand grafted vs. Omega bench grafted), and might also indicate that these pathogens infect graft union wounds during the propagation process.
By isolating important trunk disease causing pathogens from the graft unions and basal ends of rootstocks of certified nursery vines, this study has clearly showed that sanitation practices during the propagation process is of utmost importance. Benomyl, Sporekill and captan provided the best protection against trunk disease pathogens. However, integrated treatment strategies with environmentally safe products should be considered in order to comply with environmental laws.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P.H. Fourie (1) and F Halleen (2)

(1) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
(2) Disease Management, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Phenolic extraction during fermentation as affected by ripeness level of Syrah/R99 grapes

L’extraction phénolique au cours de la fermentation à partir de vendanges de différents degrees de maturité du cépage Syrah/R99 a été etudiée. Cette travail fait parti d’un projet focalisé sur la qualité du raisin et des vins obtenus au cours du millésime 2002. Les vignes sont situées à Stellenbosch (Afrique du Sud) sur un sol Glenrose

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

In vineyards grown in warm areas, it is usual that the stage of maturity of the grapes is fast and easily reach a high concentration of sugar and low acidity, but not a adequate phenolic maturation. The geometry of the trellis system and the shoot density can modify the microclimate of the cluster and, therefore, the maturation process.