Terroir 2004 banner
IVES 9 IVES Conference Series 9 Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Pro-active management of grapevine trunk diseases by means of sanitation in nurseries

Abstract

Several trunk diseases cause decline and premature dieback of grapevines. In vineyards, these pathogens gain entry into plants through unprotected wounds. Wounds are also frequently infected during the propagation stages. The pathogens survive in infected plants in a latent form and cause disease in older grapevines or in plants that are subjected to stress. No curative management strategies are known and disease prevention strategies focus on the protection of wounds in nurseries and vineyards. The aim of this study was to determine the effect of different chemical and biological sanitising treatments of propagation material on infection of trunk disease pathogens.
Rootstocks (101-14 Mgt) and grafts (Shiraz) were drench-treated in captan, benomyl, bronocide, Sporekill, Bio-sterilizer, chinosol and Trichoflow prior to cold storage (1 h drench), prior to grafting (10 min drench) and prior to planting (5 s dip). Vines were bench-grafted by hand or Omega machine and cold or hot callused, respectively. For the hand-grafted treatment, half the number of plants was grafted with sterilised hands on sterilised tables, while the other half was grafted under standard conditions (dirty hands and tables). The treated, grafted rootstocks were planted in a field nursery in Wellington and grown for 7-8 months before it was uprooted. Take percentages, root and shoot mass, as well as the incidence of Botryosphaeria, Cylindrocarpon, Phomopsis, Phaeomoniella + Phaeoacremonium spp., total pathogen and Trichoderma in graft unions and basal ends of rootstocks of uprooted vines were determined.
Take percentages for most treatments did not differ significantly. None of the treatments impacted negatively on vine growth. Benomyl, Sporekill, captan and bronocide were consistently most effective in reducing the incidence of pathogens in the graft union and in the basal end of the rootstock. Bronocide did, however, cause a reduction in take percentage. Trichoflow, chinosol and Bio-sterilizer were not as effective and marginal to no reductions were observed. Significantly more Petri disease causing pathogens were isolated from the graft unions of cold callus vines, compared to the hot callus vines. This might be attributed to the bigger grafting wounds (hand grafted vs. Omega bench grafted), and might also indicate that these pathogens infect graft union wounds during the propagation process.
By isolating important trunk disease causing pathogens from the graft unions and basal ends of rootstocks of certified nursery vines, this study has clearly showed that sanitation practices during the propagation process is of utmost importance. Benomyl, Sporekill and captan provided the best protection against trunk disease pathogens. However, integrated treatment strategies with environmentally safe products should be considered in order to comply with environmental laws.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P.H. Fourie (1) and F Halleen (2)

(1) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
(2) Disease Management, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Cell Walls Of Grape Mesocarp Possible Fining Agents For Red And White Wine

Clarification or fining of wines is a technique used in wineries to eliminate unwanted wine components, which negatively affect its quality. Clarification normally involves the addition of an adsorptive material that eliminates or reduces the presence of undesirable components. The problem is that many of the fining agents used in the industry contain allergens, such as caseinates or ovalbumin.

Unique resistance traits against downy mildew from the domestication center of grapevine

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Phototropic and geotropic shoot orientation: effect on physiological, vegetative and reproductive parameters

[English version below]

On a étudié l’effet de l’orientation des rameaux sur les paramètres physiologiques, végétatifs et reproductif durant deux saisons de croissance (2002/2003 et 2003/2004) dans la région de Stellenbosch dans une vignoble du cépage Merlot sur 99R conduite en espalier et taillé à cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.