Terroir 1996 banner
IVES 9 IVES Conference Series 9 Evaluation of viticultural suitability of Arezzo Province (Tuscany)

Evaluation of viticultural suitability of Arezzo Province (Tuscany)

Abstract

Dans une région comme la Toscane, zone dans laquelle sont produits certains des meilleurs vins italiens et du monde, la province d’Arezzo a actuellement une importance relativement marginale. Il a été entrepris une étude de zonage viticole pour caractériser les productions et pour comprendre le potentiel du territoire.
Grâce à une étude pédologique il a été possible de caractériser le territoire en «unités» de paysage dans lesquelles il a été choisi une parcelle témoin. Le cépage utilisé majoritairement pour l’étude est l’autochtone Sangiovese; auquel il a été aussi ajouté quelques vignes de Merlot et Cabernet-Sauvignon pour étudier leur adaptabilité au territoire de la province.
L’étude du climat a été effectuée en utilisant les données des dix dernières années de différentes localités de la province. Les données récoltées ont été analysées avec les indices climatiques les plus communs pmr caractériser les différents milieu en relation avec la viticulture.
Pour chacune des 40 parcelles, il a été réalisé des courbes de maturation et pour la vendange il a été récolté des données sur la croissance, la production et la qualité; de plus sur un échantillon de raisin il a été effectué des microvinifications. Les vins obtenus ont été analysés chimiquement et sensoriellement pour estimer l’influence de l’environnement sur les caractéristiques du raisin et du vin.
Grâce à l’élaboration des données, il a été mis en évidence des différences sur les courbes de maturation, sur les données productives et qualitatives et sur l’analyse chimique et sensorielle des vins par microvinification.
Ainsi il a été possible de subdiviser dans une première phase le territoire provincial en quatre macrozone ayant des caractéristiques propres: Casentino, Val d’Ambra, Val di Chiana et Valdamo.

In a region like Tuscany, place in which some of the best Italian and world-wide red wines are produced, the Province of Arezzo has at the present a relatively marginal importance. A study for a viticultural zoning has been decided in order to characterise the productions and to know the capacity of the territory.
By a pedological survey it was possible to characterise the territory in Landscape Units in which the choice of the vineyards were made. The variety mainly used for the study was the autochthonous Sangiovese; beyond to this variety some vineyards of Merlot and Cabernet-Sauvignon have been characterised in order to estimate their suitability to the territory of the province.
The study of the climate has been realised using the data of the last ten years in different sites of the province. The collected data have been processed by the main climatic indices to characterise the different environment in relation to viticulture.
For everyone of the 40 vineyards maturation curves were executed and, at harvest, data of growth, yield and quality were surveyed; moreover on a sample of grape were made microvinificazions. The obtained wines chemically and sensorially analysed to estimate the environment influence on the characteristics of grape and wine.
Thanks to the data processing differences were evidenced in maturation curves, in productive and qualitative data and in sensorial and chemical analysis of wines obtained by microvinificazions. So it has been possible to subdivide, in a first stage, the provincial territory in four macrozones having peculiar characteristic: Casentino, Val d’Ambra, Val di Chiana and Valdarno.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

TONINATO L., BRANCADORO L., PRIMA VERA F. and SCIENZA A.

*Università di Milano – Dipartimento di Produzione Vegetale, Via Celoria 2, 20133 Milano, Italy
** Ager Scri – Via Druso 10, 20133 Milano

Contact the author

Keywords

analyse sensorielle, courbes de maturation, indices climatiques, microvinification, Sangiovese
climatic indices, maturation curves, microvinifications, Sangiovese, sensorial analysis

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Evaluation of climate change impacts at the Portuguese Dão terroir over the last decades: observed effects on bioclimatic indices and grapevine phenology

In the last decades the growers of the Portuguese Dão winegrowing region (center of Portugal) are experiencing changes in climate that are influencing either grape phenology berry health and ripening. Aiming to study the relationships between climate indices (CI), seasonal weather and grapevine phenology, in this work long-term climate and phenological data collected at the experimental vineyard of the Portuguese Dão research centre between 1958 and 2019 (61 years) for the red variety Touriga Nacional, was analyzed. The trends over time for the classical temperature-based indices (Growing Season Temperature – GST -, Growing Degree Days – GDD, Huglin Index – HI and Cool Night Index – CI) presented a significantly positive slope while the Dryness Index (DI) showed a negative trend over the last 61 years. Regarding grapevine phenology, an average advance of 4.5 days per decade in the harvest day was observed throughout the last 61 years. Consequently, the weather conditions during the ripening period have changed, showing an increasing trend over time in the average temperature (higher magnitude in the maximum than in the minimum temperature) and a decrease in the accumulated rainfall. A regression analysis showed that ~50% of harvest date variability over years was explained by the temperature-based indices variability. These observed effects of climate change on bioclimatic indices and corresponding anticipation of harvest date can still be considered advantageous for the Dão terroir as it allows to achieve an optimal berry ripening before the common equinox rains and, therefore, avoid the potential negative impacts of the rainfall on berry health and composition.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.