Terroir 1996 banner
IVES 9 IVES Conference Series 9 From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

Abstract

L’aire des A.O.C. Madiran et Pacherenc du Vic-Bilh est située sur le piémont nord-occidental des Pyrénées, au nord du cône de Ger. Sa délimitation parcellaire a été complétée par une étude géo-pédologique systématique. L’analyse du modelé des échines dissymétriques qui portent le vignoble montre que la nature et la distribution des formations superficielles sont contrôlées par les systèmes de pente et les roches mères. Une carte géomorphologique au 1/50000 a guidé l’implantation de 37 topolithoséquences analysées à l’aide de 227 profils ouverts. La synthèse des études de terrain et des analyses physico-chimiques (pH, texture, capacité d’échange, minéraux argileux … ) permet de définir 12 types de sols. Le regroupement de ces unités aboutit à deux cartes pédologiques d’échelles complémentaires au 1/25000 pour la zone test du bassin du Bergons et au 1/50000 pour l’aire des A.O.C. Le contexte géomorphologique, la nature des substrats et les propriétés physico-chimiques des sols définissent leurs potentialités agronomiques et une hiérarchisation en quatre classes d’aptitudes viticoles.

The A.O.C. Madiran and Pacherenc of Vic-Bilh area is located in the northwestern piedmont of the Pyrénées, in the north of the Ger cone. lts delimitation was complemented by a systematic geo-pedological study. The geomorphologic analysis of the vineyard dissymmetrical relieves shows that the type and the distribution of the surficial formations are controlled by the slope systems and the parent rocks. A physiographic map at 1/50000 scale guided to establish 37 topolithosequences studied with 227 soil profiles. The synthesis of the field works together with physico-chemical analysis (pH, texture, exchange capacity, clay minerais … ) permits to characterize 12 soils types. These units are consolidated in order to present two pedological maps at complementary scales: 1/25000 for the Bergons basin test zone and 1/50000 for the A.O.C. surface. The geomorphological context, the type of the substrates and the physico-chemical properties of these soils define their agronomic potentialities and a hierarchization in four wine-producing aptitude classes.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

D. CHAUVAUD

Université de Pau et des Pays de l’ Adour, Laboratoire de Géodynamique et Modélisation des Bassins Sédimentaires, CURS-IPRA – B.P. 1155 – 64013 Pau Cédex

Keywords

vignoble, analyse géomorphologique, carte géomorphologique, topolithoséquences, cartes pédologiques, aptitudes viticoles des sols
vineyard, geomorphological analysis, physiographic map, .topolithosequences, pedological maps, wine producing aptitudes of soils

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Process for partial or total dealcoholization of wine using a post-fermentation microbiological technique

The dealcoholized wine sector is experiencing strong market growth, driven by increasing consumer demand.

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

The modification of cultural practices in grapevine cv. Syrah, does it modify the characteristics of the musts?

The work shows the results of a year of experimentation (2020) in a Syrah variety vineyard in La Roda (Castilla-La Mancha, Spain). The trial approach was on a randomized block design with two factors: Irrigation (I) and Pruning (P).
Irrigation schedules were adjusted to apply amounts close to 1,500 m3/ha. With this provision, 2 different irrigation treatments were proposed: I1) Start of irrigation from pea-sized grape to post-harvest (providing at least 20 % of the total amount of irrigation water to be provided post-harvest); I2) Start of irrigation from pea-sized grape to harvest (usual irrigation practice in the study area). Pruning was proposed with two treatments, one at the end of January (P1), which is pruning on a conventional date; and P2) pruning carried out at the beginning of budding. In total, 4 repetitions were designed with 4 elementary plots, each one of them representing one of the proposed treatments (I1P1; I1P2; I2P1; I2P2). In total, 16 plots were worked on and each elementary plot consisted of 30 strains, distributed in 3 lines.
The productive response was evaluated with the yield results of the harvest harvested at 23 ºBrix. The qualitative response was measured in the musts through the indices of technological (acidity, pH and potassium) and phenolic maturity and aromatic compounds in free and glycosylated fractions. The treatments tested had, in general, an effect on the different variables analyzed.

Influence of plant growth regulators and water deficit on cv. Krissy table grape

Context and purpose of the study. The quality of table grape clusters significantly affects consumer perception and market value, with berry size, texture, color, and overall appearance playing key roles.