Terroir 1996 banner
IVES 9 IVES Conference Series 9 From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

Abstract

L’aire des A.O.C. Madiran et Pacherenc du Vic-Bilh est située sur le piémont nord-occidental des Pyrénées, au nord du cône de Ger. Sa délimitation parcellaire a été complétée par une étude géo-pédologique systématique. L’analyse du modelé des échines dissymétriques qui portent le vignoble montre que la nature et la distribution des formations superficielles sont contrôlées par les systèmes de pente et les roches mères. Une carte géomorphologique au 1/50000 a guidé l’implantation de 37 topolithoséquences analysées à l’aide de 227 profils ouverts. La synthèse des études de terrain et des analyses physico-chimiques (pH, texture, capacité d’échange, minéraux argileux … ) permet de définir 12 types de sols. Le regroupement de ces unités aboutit à deux cartes pédologiques d’échelles complémentaires au 1/25000 pour la zone test du bassin du Bergons et au 1/50000 pour l’aire des A.O.C. Le contexte géomorphologique, la nature des substrats et les propriétés physico-chimiques des sols définissent leurs potentialités agronomiques et une hiérarchisation en quatre classes d’aptitudes viticoles.

The A.O.C. Madiran and Pacherenc of Vic-Bilh area is located in the northwestern piedmont of the Pyrénées, in the north of the Ger cone. lts delimitation was complemented by a systematic geo-pedological study. The geomorphologic analysis of the vineyard dissymmetrical relieves shows that the type and the distribution of the surficial formations are controlled by the slope systems and the parent rocks. A physiographic map at 1/50000 scale guided to establish 37 topolithosequences studied with 227 soil profiles. The synthesis of the field works together with physico-chemical analysis (pH, texture, exchange capacity, clay minerais … ) permits to characterize 12 soils types. These units are consolidated in order to present two pedological maps at complementary scales: 1/25000 for the Bergons basin test zone and 1/50000 for the A.O.C. surface. The geomorphological context, the type of the substrates and the physico-chemical properties of these soils define their agronomic potentialities and a hierarchization in four wine-producing aptitude classes.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

D. CHAUVAUD

Université de Pau et des Pays de l’ Adour, Laboratoire de Géodynamique et Modélisation des Bassins Sédimentaires, CURS-IPRA – B.P. 1155 – 64013 Pau Cédex

Keywords

vignoble, analyse géomorphologique, carte géomorphologique, topolithoséquences, cartes pédologiques, aptitudes viticoles des sols
vineyard, geomorphological analysis, physiographic map, .topolithosequences, pedological maps, wine producing aptitudes of soils

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Premiers résultats d’une étude des caractéristiques analytiques et sensorielles de vins de Syrah selon leur terroir

A set of Syrah plots covering a wide range of terroirs distributed in the vineyards of the Rhone Valley and the Mediterranean South is examined through their oenological and sensory characteristics. The multidimensional analysis of data leads to the following groupings: (1) A group of unstructured wines with a simple aromatic profile dominated by fruity-floral notes; they come from plots where the ripening conditions have been disturbed by unfavorable climatic conditions, or an excess harvest.

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

Sustainability and resilience in the wine sector

Resilience and sustainability are two fundamental concepts in the sustainable development of the wine sector, being closely interconnected.