Terroir 1996 banner
IVES 9 IVES Conference Series 9 How to resolve the lack acidity in wines by better understanding of the adequation of grape varietal-terroir: Negrette grape in the terroir of Côtes du Frontonnais

How to resolve the lack acidity in wines by better understanding of the adequation of grape varietal-terroir: Negrette grape in the terroir of Côtes du Frontonnais

Abstract

Le manque d’acidité des vins est un sujet préoccupant dans de nombreux vignobles car l’acidité est un facteur déterminant de la qualité des vins, en liaison avec la nutrition minérale de la vigne.
Dans le but de résoudre ce problème de manière agronomique, une double expérimentation a été mise en place sur la Négrette, cépage principal des Côtes du Frontonnais, qui donne des vins peu acides. Tout d’abord en culture hors-sol nous avons montré que la teneur en potassium de la solution nutritive est corrélée positivement à celle des feuilles, des moûts, ainsi qu’au pH des vins. Par contre, un apport complémentaire de calcium à la solution nutritive diminue la teneur en potassium des limbes, des moûts, et le pH des vins. En plein champ, sur sols acides, pauvres en calcium, nous avons constaté que plus le sol contient du potassium, plus la Négrette l’absorbe, plus on en retrouve dans les moûts et les vins et moins ces derniers sont acides.
En liaison avec ces résultats nous avons déterminé les terroirs de l’ A.O.C. Côtes du Frontonnais (vignoble du Sud Ouest de la France ) et étudié l’effet d’un amendement calcaire sur l’acidité des vins issus de chacun de ces terroirs. Cette appellation se situe sur de vieilles terrasses alluviales, décalcifiées et de topographie plane. Le climat étant homogène sur toute l’appellation, quatre terroirs ont été identifiés, ils correspondent aux types de sols rencontrés dans cette zone : les graves (très riches en cailloux), les boulbènes caillouteuses (riches en cailloux et limons), les boulbènes sableuses (riches en sable) et les boulbènes blanches (riches en limons). Les résultats montrent que le chaulage entraîne une diminution des teneurs en potassium dans les feuilles, les moûts et les vins (liée à l’antagonisme K-Ca) et une augmentation de l’acidité des vins (liée à la diminution de la précipitation de l’acide tartrique par le potassium). De plus, le chaulage a un effet variable en fonction des terroirs, et les boulbènes caillouteuses donnent les vins les plus acides.
Cette étude montre que sur sols acides, le chaulage est une bonne alternative pour améliorer l’acidité des vins de Négrette. Elle met en évidence l’importance de la prise en compte de la nutrition minérale du cépage (plus particulièrement la nutrition potassique) et du terroir sur la qualité des vins.

The lack of acidity is a matter of concern in many vineyards. Acidity is a determining factor in wine quality and are influenced by the minerai nutrition of the vine.
In order to resolve this problem a double experiment was carried out on Négrette, the principal cultivar in the Côtes
du Frontonnais Appellation, that produces wines which are not very acidic. In the hydroponic culture, the level of potassium nutrition in the solution was positively correlated to leave and must potassium content, as well as to wine pH. However, a complementary calcium addition decreased the leave, berry and must potassium contents and the wine pH. In the field trail, on an acid soil with a lack of calcium, evidence was found that a higher potassium content of soils leads to a higher absorption of potassium by Négrette. This increase in potassium absorption can lead to higher potassium content of musts and wines, thereby reducing their acidity.
This study also aimed to determinate the different terroirs of the “Appellation d’Origine Contrôlée Côtes du Frontonnais” which is situated in the South-West of France and to study the effect of liming on the acidity of wines from each terroir. This appellation is situated on ancient alluvial terraces, which is decalcified with its topography levelled off. Four terroirs were differentiating corresponding to typical soils of the appellation: “graves” (gravely stone ), stony “boulbènes” (high stone content), sandy “boulbènes” (high sand content) and the white “boulbènes” (high limestone content). The results showed that liming lowers the level of potassium in leaves, musts and wines (linked to the K-Ca antagonism) and leads to an increase in the acidity in wines (related to a decrease in potassium bitartrate precipitation). It was also found that the effect of liming on wine acidity would depend on the terroir, leading to more acid wines from the stony “boublènes”.
This study shows that liming can be used to improve the acidity of Négrette wines on acids soils. It also highlights the importance of mineral nutrition (in particular potassium nutrition) and consequently the importance of terroir on wine quality.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

M. GARCIA, H. IBRAHIM and A. CADET

Centre de viticulture et d’œnologie de Midi-Pyrénées
Avenue de l’ agrobiopôle, 31 320 Auzeville-Tolosane

Contact the author

Keywords

 terroir, acidité des vins, nutrition minérale, Fronton, Négrette
terroir, wine acidity, minerai nutrition, Fronton, Négrette

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Can grapevine tolerance to bunch rot be directly induced by groundcover management?

Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid environments. The effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). Previous studies of our group showed strong differences in bunch rot incidence between floor management treatments: cover crop (CC) vs weed-free strips under the trellis with herbicide (H). We observed that in some circumstances this reduction in bunch rot incidence occurred without major vine growth differences among treatments. The aim of the present study was to test the general hypothesis that other factors unrelated to grapevine vegetative expression could be more relevant to grapevine susceptibility to bunch rot.

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.

Fresh odorous terpenoids in wines, multiples pathways of limonene degradation.

Mint aromas in wine, which manifest as “cool” or “fresh” character, can originate from different chemical classes, one of which is the terpenoids. A broadly diverse, naturally occurring class of chemical compounds, terpenes possess wide applications across multiple industries due to their pharmaceutical, antiseptic, medical, and aromatic properties. Monoterpenes, a subclass of terpenoids, likewise play a major role in wine sensory perception. Within the monoterpenes, those possessing “mint” odor qualities have often been studied in the context of “vegetal” or “herbal” wine faults; however, their role in positive aromatic evolution is less understood. Yet an extensive 2015 study of older premium Bordeaux red wines identified mint as a contributing factor in quality bouquet development. From that point, it was necessary to investigate the origins of those monoterpenes as well as the chemical conditions required for their development during ageing. Those two key points could finally facilitate predicting the apparition of minty character in older wines based on their composition while young.
A principal contributor is the cyclic monoterpene limonene, which was isolated relatively early in grapes and wine. Not only does limonene itself possess a cool, fresh odor, it is also a precursor for, and possible derivative of, additional mint monoterpenes. Among the most commonly found monoterpenes, limonene and its derivatives can constitute the majority of the essential oils of citrus fruits, mint and herb plants, and coniferous trees. Many of these mint monoterpenes also occur in grapes and wine. With aromas ranging from woody and earthy to citrus to mint and herbaceous, their contribution to wine is potentially diverse and multi-faceted. While sometimes, found at concentrations below the sensory threshold, synergistic effects between these molecules could render them perceivable.
This review looks at limonene and its transformation as studied in different matrices, and potential parallels or analogues in wine. Moreover, within the complex kinetics of wine aging, the relative concentrations of mint monoterpenes appears to continue to evolve and change, with additional evidence from model wine solutions suggesting they may even revert to their originating precursors. Continued study of mint monoterpenes and their role in wine aromatics will contribute to a deeper understanding of the development of aging bouquet and the longevity of premium wines.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection