Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

Abstract

[English version below]

La région viticole de Mendoza est la principale zone vitivinicole d’Argentine qui se compose de 3 oasis (Nord, Valle de Uco, Sud). La première zone vitivinicole, située dans l’oasis Nord, est composée par les département de Luján de Cuyo et Maipu. C’est la zone de production la plus ancienne et la plus reconnue pour la qualité de sa production. Ce travail se porte plus particulièrement sur le département de Luján de Cuyo qui constitue le lieu traditionnel de production du Malbec argertin. Ce travail propose de caractériser les terroirs et de mettre en avant leurs typicités. Le croisement des informations climatiques et des analyses des sols est à l’origine d’un zonage agro-écologique réalisé antérieurement, ces zones seront précisées dans cette étude et seront définies comme des Unités Terroirs de Base (UTB). La mise en place d’un réseau de 14 parcelles d’observation composées de la même variété de référence le Malbec, permet l’étude du potentiel vitivinicole de cette zone. A la suite d’une première année d’étude, les zones homogènes ont pu être précisées et caractérisées du point de vue du comportement de la plante et de la typicité des vins. Ce travail sera poursuivi dans les années à venir pour confirmer les résultats et donner des réponses aux producteurs.

Mendoza is the most important wine producing province of Argentina. It is composed of three cases (Oasis Norte, Oasis Valle de Uco, Oasis Sur). The main wine producing zone is located in the “North Oasis” and is composed of the departments of Luján de Cuyo and Maipu. It is the oldest and the most well known zone for its quality of produce. This study focuses on the department of Luján, which is the traditional vine growing production area for the argentine Malbec variety. The aim of this study is to characterise the different “terroirs” and to point out their typicities. The interaction between climatic information and soil analysis had allowed to realise a agronomic and ecological zonation in a previous work. The zones which had been defined will be precise in this study and will constitute the “Basic Units of Terroir” (UTB). Within these units a net of fourteen vineyards were elected. All of them present the same reference variety : Malbec, in order to study the viticulture capacity of this zone. Homogeneous zones have yet been located and characterised according to the plant behaviour and the typicity of wines. Further studies are foreseen, so that the results can be verified and can help the productors.

DOI:

Publication date: February 11, 2022

Issue: Terroir 2002

Type: Article

Authors

A. VIGIL (1), M. GRASSIN (1), H. OJEDA (1), C. CATANIA (1), H. VILA (1), R. DEL MONTE (1), J. ZULUAGA (2)

(1) INTA Estación Experimental Agropecuario (EEA) Mendoza, Chacras de Coria, Mendoza, Argentina
(2) Instituto Nacional del Agua (INA), Ave Belgrano, Capital, Mendoza, Argentina

Keywords

zonage, sol, climat, eau, potentialité vitivinicole, typicité
zone, soil, climate, water, viticulture potential, typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.

Corvina berry morphology and grape composition as affected by two training system (Pergola and Guyot) in a context of climate change scenario

The Valpolicella area (Veneto Region, Italy) is famous for its high quality wines: Amarone and Recioto, both obtained from partial post-harvest dehydrated red grapes. The main cultivars used for these wines are Corvina and Corvinone. In this Region hundreds of years ago a particular training system (Pergola, cordon/cane with horizontal shoot-positioning) was developed. In the last 20 years the Guyot have been introduced in the area; now Pergola and Guyot are equally widespread in the Valpolicella area. In two different environmental conditions (hill and floodplain) two vineyards, one for each type of training system, were studied along two years (2011-2012).

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.