Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

Abstract

[English version below]

La région viticole de Mendoza est la principale zone vitivinicole d’Argentine qui se compose de 3 oasis (Nord, Valle de Uco, Sud). La première zone vitivinicole, située dans l’oasis Nord, est composée par les département de Luján de Cuyo et Maipu. C’est la zone de production la plus ancienne et la plus reconnue pour la qualité de sa production. Ce travail se porte plus particulièrement sur le département de Luján de Cuyo qui constitue le lieu traditionnel de production du Malbec argertin. Ce travail propose de caractériser les terroirs et de mettre en avant leurs typicités. Le croisement des informations climatiques et des analyses des sols est à l’origine d’un zonage agro-écologique réalisé antérieurement, ces zones seront précisées dans cette étude et seront définies comme des Unités Terroirs de Base (UTB). La mise en place d’un réseau de 14 parcelles d’observation composées de la même variété de référence le Malbec, permet l’étude du potentiel vitivinicole de cette zone. A la suite d’une première année d’étude, les zones homogènes ont pu être précisées et caractérisées du point de vue du comportement de la plante et de la typicité des vins. Ce travail sera poursuivi dans les années à venir pour confirmer les résultats et donner des réponses aux producteurs.

Mendoza is the most important wine producing province of Argentina. It is composed of three cases (Oasis Norte, Oasis Valle de Uco, Oasis Sur). The main wine producing zone is located in the “North Oasis” and is composed of the departments of Luján de Cuyo and Maipu. It is the oldest and the most well known zone for its quality of produce. This study focuses on the department of Luján, which is the traditional vine growing production area for the argentine Malbec variety. The aim of this study is to characterise the different “terroirs” and to point out their typicities. The interaction between climatic information and soil analysis had allowed to realise a agronomic and ecological zonation in a previous work. The zones which had been defined will be precise in this study and will constitute the “Basic Units of Terroir” (UTB). Within these units a net of fourteen vineyards were elected. All of them present the same reference variety : Malbec, in order to study the viticulture capacity of this zone. Homogeneous zones have yet been located and characterised according to the plant behaviour and the typicity of wines. Further studies are foreseen, so that the results can be verified and can help the productors.

DOI:

Publication date: February 11, 2022

Issue: Terroir 2002

Type: Article

Authors

A. VIGIL (1), M. GRASSIN (1), H. OJEDA (1), C. CATANIA (1), H. VILA (1), R. DEL MONTE (1), J. ZULUAGA (2)

(1) INTA Estación Experimental Agropecuario (EEA) Mendoza, Chacras de Coria, Mendoza, Argentina
(2) Instituto Nacional del Agua (INA), Ave Belgrano, Capital, Mendoza, Argentina

Keywords

zonage, sol, climat, eau, potentialité vitivinicole, typicité
zone, soil, climate, water, viticulture potential, typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

The state of the climate

The climate has warmed over the past century or more bringing about changes in numerous aspects in both earth and human systems

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

Control of bacterial growth in carbonic maceration winemaking through yeast inoculation

Controlling the development of the bacterial population during the winemaking process is essential for obtaining correct wines[1]. Carbonic Maceration (CM) wines are recognised as high-quality young wines. However, due to its particularities, CM winemaking implies a higher risk of bacterial growth: lower SO2 levels, enrichment of the must in nutrients, oxygen trapped between the clusters… Therefore, wines produced by CM have slightly higher volatile acidity values than those produced by the destemming/crushing method[2].

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.