Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

Viticultural zoning of the country of Mendoza, Argentina. Study of the first zone : department of Luján de Cuyo. Statement of the study year 2002

Abstract

[English version below]

La région viticole de Mendoza est la principale zone vitivinicole d’Argentine qui se compose de 3 oasis (Nord, Valle de Uco, Sud). La première zone vitivinicole, située dans l’oasis Nord, est composée par les département de Luján de Cuyo et Maipu. C’est la zone de production la plus ancienne et la plus reconnue pour la qualité de sa production. Ce travail se porte plus particulièrement sur le département de Luján de Cuyo qui constitue le lieu traditionnel de production du Malbec argertin. Ce travail propose de caractériser les terroirs et de mettre en avant leurs typicités. Le croisement des informations climatiques et des analyses des sols est à l’origine d’un zonage agro-écologique réalisé antérieurement, ces zones seront précisées dans cette étude et seront définies comme des Unités Terroirs de Base (UTB). La mise en place d’un réseau de 14 parcelles d’observation composées de la même variété de référence le Malbec, permet l’étude du potentiel vitivinicole de cette zone. A la suite d’une première année d’étude, les zones homogènes ont pu être précisées et caractérisées du point de vue du comportement de la plante et de la typicité des vins. Ce travail sera poursuivi dans les années à venir pour confirmer les résultats et donner des réponses aux producteurs.

Mendoza is the most important wine producing province of Argentina. It is composed of three cases (Oasis Norte, Oasis Valle de Uco, Oasis Sur). The main wine producing zone is located in the “North Oasis” and is composed of the departments of Luján de Cuyo and Maipu. It is the oldest and the most well known zone for its quality of produce. This study focuses on the department of Luján, which is the traditional vine growing production area for the argentine Malbec variety. The aim of this study is to characterise the different “terroirs” and to point out their typicities. The interaction between climatic information and soil analysis had allowed to realise a agronomic and ecological zonation in a previous work. The zones which had been defined will be precise in this study and will constitute the “Basic Units of Terroir” (UTB). Within these units a net of fourteen vineyards were elected. All of them present the same reference variety : Malbec, in order to study the viticulture capacity of this zone. Homogeneous zones have yet been located and characterised according to the plant behaviour and the typicity of wines. Further studies are foreseen, so that the results can be verified and can help the productors.

DOI:

Publication date: February 11, 2022

Issue: Terroir 2002

Type: Article

Authors

A. VIGIL (1), M. GRASSIN (1), H. OJEDA (1), C. CATANIA (1), H. VILA (1), R. DEL MONTE (1), J. ZULUAGA (2)

(1) INTA Estación Experimental Agropecuario (EEA) Mendoza, Chacras de Coria, Mendoza, Argentina
(2) Instituto Nacional del Agua (INA), Ave Belgrano, Capital, Mendoza, Argentina

Keywords

zonage, sol, climat, eau, potentialité vitivinicole, typicité
zone, soil, climate, water, viticulture potential, typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Pacific Northwest wine regions and climates

This paper presents a review of wine regions in the Pacific Northwest (PNW) of North America. The PNW consists of the states of Oregon, Washington and Idaho and the province of British Columbia.

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.