Terroir 1996 banner
IVES 9 IVES Conference Series 9 “Garrigues”, part of the mediterranean vine terroirs

“Garrigues”, part of the mediterranean vine terroirs

Abstract

[English version below]

Les paysages viticoles méditerranéens présentent une originalité qui ne se retrouve nulle part ailleurs : ils associent des garrigues très odoriférantes à des parcelles de vignes souvent qualitatives. La connaissance empirique des vins du Languedoc par leurs dégustateurs a conduit la Chambre d’Agriculture de l’Hérault à supposer que les arômes de la garrigue environnante peuvent se retrouver dans les vins (arômes de ciste, de genévrier, … ) Grâce à la collaboration d’une cave coopérative héraultaise, des essais ont été mis en place pour vérifier cette hypothèse. Ils comportent une première partie expérimentale, débutée en 2000, basée sur la comparaison d’échantillons de vins de Grenache, provenant de mini­ récoltes (50 kg) de parcelles très contrastées de par leur environnement de garrigue. La seconde partie des essais a débuté en 2001 et consiste en une sélection parcellaire au terroir de parcelles de grenache qualitatives entourées de garrigues et entourées de vignes (5 ha par lot environ.) Chaque lot est vinifié séparément par la cave coopérative. Les premiers résultats de dégustation sont très encourageants. Ils montrent que les spécificités de l’environnement naturel des vignes méditerranéennes pourront probablement être valorisées à terme par l’élaboration de vins originaux et difficilement imitables sur le marché.

The mediterranean viticultural landscapes are made of original patterns of qualitative vineyards alterning with odorous garrigues. Some connoisseurs of the Languedoc wines noted typical aromas of garrigue plants in the wines made from the most isolated vineyards. The Hérault Chamber of Agriculture decided to study whether these assumptions can be validated or not, in order to valorize the regional typicity of these wines. Two experiments were made on the vineyard of a partner wine coop. The first one, started in 2000, compares two samples of grenache wines made from vinifications of about 50 kg of grapes, each plot being located in contrasted places (one bordered by garrigues and one by vines). The second one started in 2001 and consists in the wine- making from a selection of about 10 ha of qualitative vines of grenache, 5 ha among garrigues and 5 ha among other vines. The first winetastings are very promising. They show that one must consider the wild environment as a whole part of the vine terroir definition, on the understanding that the potentiality of a terroir can only be expressed by vines technically perfect.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

William TRAMBOUZE (1), Jean-Pierre ARGILLIER (2), Nathalie GOMA-FORTIN (1)

(1) Chambre d’agriculture de l’Hérault, BP 83, allée du Géreral Montagne, 34120 Pézenas
(2) Chambre d’agriculture de l’Hérault, Maison des agriculteurs, Mas de Saporta, 34970 Lattes

Contact the author

Keywords

terroir viticole, garrigue, sélection parcellaire, typicité du vin
vine terroir, garrigue, vineyard selection, wine typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited.

WINE FERMENTATION METABOLITES PRODUCED BY TWO TORULASPORA DELBRUECKII STRAINS ISOLATED FROM OKANAGAN VALLEY, BC, CANADA VINEYARDS

Wine aroma is influenced by various factors, from agricultural practices in the vineyard to the enological choices made by winemakers throughout the vinification process. Spontaneous fermentations have a characteristically deeper complexity of aromas when compared to fermentations that have been inoculated with Saccharomyces (S.) cerevisiae because of the diversity of microflora naturally present on grape skins. Non-Saccharomyces yeast are being extensively studied for their ability to positively contribute to wine aroma and flavour. These yeasts are known to liberate more bound volatile compounds present in grape must than S. cerevisiae through the enzymatic action of β-glucosidases and β-lyases1.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.