Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zoning, environment, and landscape: historic and perspective

Zoning, environment, and landscape: historic and perspective

Abstract

[English version below]

Dans une approche globale, nous proposons la définition suivante du zonage : “représentation cartographique associée à une sectorisation du territoire en zones unitaires homogènes à partir de facteurs discriminants établis sur la base d’indicateurs quantifiables et d’avis d’experts”. La première application de cette méthode a porté sur la caractérisation du terroir en liaison avec les aspects qualitatifs des vins. Il est également possible d’envisager d’appliquer cette démarche dans les stratégies environnementales et paysagères liées aux approches territoriales et aux pratiques viticoles. Cette méthode peut servir de base dans la mise en œuvre des outils financiers associés aux mesures environnementales (CTE, aides spécifiques). Le zonage est déjà utilisé sur le plan législatif vis-à-vis de l’utilisation des amendements azotés (zones vulnérables) et de la protection des espèces (biotope, natura 2000). Dans le cadre d’une application spécifique à la viticulture associé à la multifonctionnalité du terroir, plusieurs axes peuvent être envisagés:
– Vulnérabilité des sols au transfert de polluants,
– Cartes d’érosion et d’aptitudes à l’enherbement
– Caractérisation microbiologique des sols,
– Protection des paysages,
– Application sectorisée des modèles de prévision des maladies.

In a global approach, we propose the following definition as regards zoning: “cartographic representation associated to a division into sectors of the territory in homogeneous unitarian zones from discriminants factors established on the basis of quantifiable indicators and of experts opinions”. The first application of this method concerned the soil characterization in contact with the qualitative wine aspects. It is also possible to intend to apply this step in the environmental and landscaped strategies bound to the territorial approaches and to the wine practices. This method can serve as base in the application of the financial tools associated to the environmental measures (CTE, specific helps). Zoning is already used on the legislative plan towards the nitrogenous amendments use (vulnerable zones) and the sorts protection (biotope, NATURA 2000). Within the framework of a specific vine growing application associated to the soil multifunctionality, several axes can be envisaged:
– Ground vulnerabilities in the pollutant transfers,
– Cards of erosion and capacities in the enherbement,
– Microbiologie characterization of grounds,
– Landscape protections,
– Sectorised application of the disease forecast models.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Joël ROCHARD and Nadège FOURNY

ITV France – Pôle environnement – 17, rue Jean Chandon Moët, B.P.20046, 51202 Epernay cedex

Contact the author

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

YEAST-PRODUCED VOLATILES IN GRAPE BASED SYSTEM MODEL ACTING AS ANTIFUNGAL BIOAGENTS AGAINST PHYTOPATHOGEN BOTRYTIS CINEREA

Botrytis cinerea Pers., the causal agent of grey mould disease, is responsible for substantial economic losses, as it causes reduction of grape and wine quality and quantity. Exploitation of antagonistic yeasts is a promising strategy for controlling grey mould incidence and limiting the usage of synthetic fungicides. In our previous studies, 119 different indigenous yeasts were screened for putative multidimensional modes of action against filamentous fungus B. cinerea [1]. The most promissing biocontrol yeast was Pichia guilliermondii ZIM624, which exhibited several anatagonistic traits (production of cell wall degrading enzymes, chitinase and β-1,3-glucanase; demonstration of in vitro inhibitory effect on B. cinerea mycelia radial growth; production of antifungal volatiles, assimilation of a broad diversity of carbon sources, contributing to its competitivnes in inhabiting grapes in nature).

High resolution remote sensing for mapping intra-block vine vigour heterogeneity

In vineyard management, the block is considered today as the technical work unit. However, considerable variability can exist inside a block with regard to physiological parameters, such as vigour, particularly because of soil heterogeneity. To represent this variability spatially, many measurements have to be taken, which is costly in both time and money. High resolution remote sensing appears to be an efficient tool for mapping intra-block heterogeneity.

Improving shelf life of viticulture-relevant biocontrol and biostimulant microbes using CITROFOL® AI as liquid carrier

Bacillus velezensis and Trichoderma harzianum are relevant microorganisms used in viticulture as biocontrol agents against pathogens of trunk (e.g. Phaeoacremonium minimum), leaves (e.g. Plasmopara viticola) or fruit (e.g. Botrytis cinerea), or as biostimulants, improving the resilience of plants against biotic or abiotic stressors through different direct and non-direct interactions.
In this biotechnological approach, formulation plays a crucial role. Controlling water activity in the product, thus stabilising microbial viability is key to ensuring effective application. We present the benefits of the citrate ester CITROFOL® AI (triethyl citrate) as a novel bio-based carrier liquid in microbial formulations. CITROFOL® AI is safe for humans and the environment, thus offering a promising base for sustainable treatments in viticulture.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Chitosan from mushroom by-products: sustainable extraction process and winemaking application

Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (DD) and molecular weight (MW), it shows variable properties that differ from those of other natural polysaccharides.