Terroir 1996 banner
IVES 9 IVES Conference Series 9 Settling precocity and growth kinetics of the primary leaf area: two indicative parameters of grapevine behaviour

Settling precocity and growth kinetics of the primary leaf area: two indicative parameters of grapevine behaviour

Abstract

[English version below]

Le comportement de la vigne en terme de fonctionnement thermique et hydrique, influe de manière directe sur la qualité des baies de raisin. L’effet du terroir peut être perçu à travers l’étude de paramètres tels que la précocité, la mise en place de la surface foliaire ou la vigueur. Une expérimentation a été conduite en Val de Loire sur le cépage chenin dans le but de mieux comprendre le rôle des variables liées au terroir sur la croissance et le développement de la vigne et in fine sur la qualité des baies. Le protocole, basé sur des mesures agro-viticoles et des analyses physico-chimiques réalisées entre 1997 et 2001 s’appuie sur un réseau de 5 parcelles expérimentales, établi en 1990. Ce réseau repose sur le modèle de milieu physique «roche-altération-altérite», élaboré par MORLAT (1998). Des résultats significatifs ont été mis en évidence quant à la précocité de mise en place du feuillage et la vitesse d’accroissement de la surface foliaire. La précocité d’apparition du feuillage diffère en fonction du milieu rencontré, roche, altération ou altérite, la précocité de mi-débourrement sur le milieu roche étant plus forte. La vitesse d’accroissement de la surface foliaire varie également en fonction du milieu. Les parcelles sur roche, plus précoces, ont leur vitesse d’accroissement du feuillage primaire la plus importante plusieurs semaines avant floraison. Sur milieu altérite, plus tardif, la vitesse d’installation du feuillage est significativement plus élevée quelques semaines avant la floraison, voire même durant la floraison; ce qui induit une plus forte concurrence entre le cycle végétatif et reproducteur de la vigne. Les terroirs les plus tardifs sont caractérisés par une teneur en sucres des baies plus faible. Il apparaît une corrélation négative entre une mise en place tardive du feuillage primaire, la vitesse d’accroissement de la surface foliaire et la qualité de la baie. En particulier, l’indice de maturité et le rapport acide tartrique/acide malique semblent bien discriminer les terroirs représentatifs de différents types de fonctionnement de la vigne.

The behavior of the grapevine, in terms of thermic and hydric functioning, has a direct effect on the composition of the berries at harvest time. The «terroir » effect on the vine can be approached through the study of some parameters such as the earliness of the phenological stages, the settling of the leaf area and the vigor. An experiment was conducted in the Mid- Loire valley, with the chenin variety, in order to understand better the role of the «terroir » variables on the growth and development of the vine, and in fine on the quality of the berries. The data were obtained over the period 1997-2001 out of a network of 5 experimental plots, characterized by the intensity of the weathering process of their bed-rock : from low (rock type soil) to high (weathered type soil), according to the model proposed by MORLAT (1998). All plots were managed the same way. Significative differences between terroirs were observed concerning the precocity of the establishment of the primary leaf area and its growth kinetics. The primary leaf area settled earlier on the rock type soils than on the weathered type soils. On the former, the growth kinetics reached its highest level several weeks before flowering, while on the latter; the quicker increase of the leaf area took place just a few weeks before or even during the flowering stage. On the weathered type terroirs, this late increase induces a stronger competition between the vegetative and the reproductive cycles for the photosynthetic metabolites; at that stage (fruit set), the grapevine needs still to spend much energy to build its leaf area. Regarding berry composition, terroirs corresponding to the weathered type soils were found to produce less sugars and more malic acid than the rock type terroirs. This experiment showed a negative correlation between a late settling of the leaf area, its rapid growth and the quality of the berries. Two particular indexes – the maturity index and the tartaric/malic acid ratio – seem able to discriminate the terroirs regarding their different functioning mode.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Laurence STEVEZ (1), Gérard BARBEAU (2), Yves CADOT (2), Marie-Hélène BOUVET (2), Michel COSNEAU (2), Christian ASSELIN (2)

(1) Ecole Supérieure d’ Agriculture, 55 rue Rabelais, 49007
(2) INRA-UVV, 42 rue Georges Morel, 49071 Beaucouzé Cedex

Contact the author

Keywords

vigne, surface foliaire primaire, précocité, vitesse de croissance, qualité
grapevine, ptimary leaf area, precocity, growth kinetics, quality

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

L’effetto paesaggio sul sistema delle preferenze: i vini veneti tra evocazioni di consumo e determinanti di scelta

La presente relazione mira ad individuare il ruolo del paesaggio nella determinazione delle preferenze della domanda, in modo da far emergere i fattori immateriali che definiscono il valore territoriale dei vini tipici su cui far leva per le strategie di marketing. L’analisi ha riguardato vini tipici del Veneto e coinvolto soggetti non provenienti da questa Regione. Ne è emerso l’effetto amplificativo dell’immagine del paesaggio sulla qualità percepita.

Modulation of berry composition by different vineyard management practices

High concentration of sugars in grapes and alcohol in wines is one of the consequences of climate change on viticulture production in several wine-growing regions. In order to investigate the possibilities of adaptation of vineyard management practices aimed to reduce the accumulation of sugar during the maturation phase without reducing the accumulation of anthocyanins in grapes, a study with severe shoot trimming, shoot thinning, cluster thinning and date of harvest was conducted on Merlot variety in Istria region (Croatia), under the Mediterranean climate. Four factors which may affect grape maturation and its composition at harvest were investigated in a two-years experiment; severe shoot trimming applied at veraison when >80% of berries changed colour (in comparison to untreated control), shoot thinning (0 and 30%), cluster thinning (0 and 30%), and the date of harvest (early and standard harvest dates). Shoot thinning had no significant impact on berry composition, despite the obtained reduction in yield per vine. Lower Brix in grapes were obtained with earlier harvest date and if no cluster thinning was applied, although at the same time a reduction in the concentration of anthocyanins in berries was observed in these treatments. On the other hand, if severe shoot trimming was applied when >80% of berries changed colour, a reduction of Brix was obtained without a negative impact on berry anthocyanins concentration. We conclude that in cases when undesirably high sugar concentrations at harvest are expected, severe shoot trimming at 80% veraison may effectively be used in order to obtain moderate sugar concentration in berries together with the adequate phenolic composition.

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine.

Elaboration des cartes conseils pour une gestion du terroir à l’échelle parcellaire: utilisation d’algorithmes bases sur des paramètres physiques du milieu naturel

The “Anjou Terroirs” programme aims at bringing the necessary scientific basis for a ratio­nal and reasoned exploitation of the technical itinerary of the terroir. The scale study is 1/12500. For the mapping, many parameters, such as the granulometry or the depth of soil are observed to each point of caracterisation.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.