Terroir 1996 banner
IVES 9 IVES Conference Series 9 Establishment of a geodatabase ‘for the characterization of the viticultural “terroirs” of “canton de Vaud” (Switzerland)

Establishment of a geodatabase ‘for the characterization of the viticultural “terroirs” of “canton de Vaud” (Switzerland)

Abstract

[English version below]

La caractérisation objective des terroirs viticoles est nécessaire pour mieux comprendre les relations existantes entre les sols, la plante et la qualité de la production vinicole. Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un géorépertoire pédologique et agronomique a été conçu et réalisé. Son objectif est d’offrir une structure d’accueil et de traitement des données pédologiques et agronomiques récoltées sur le terrain. C’est un outil de saisie et d’exploitation, qui facilite la caractérisation des sols viticoles et la mise en valeur des données agronomiques. Couplé à un système d’information géographique, il permet d’en faire la synthèse et l’interprétation. Toutes les données relatives aux vignobles sont ainsi centralisées. La base de données réalisée fonctionne sur les logiciels couplés Access et Maplnfo. Ce couplage de la base- avec un système d’information géographique (SIG) permet de confronter les données pédologiques et agronomiques à celles du microclimat et d’en déduire finalement les unités terroirs recherchées.

The objective characterization of the viticultural “terroirs” is necessary in order to better understand the relationships between soils, plants and wine production quality. As part of a research on the viticultural “terroirs” of “canton de Vaud” – Switzerland, a pedological and agronomical geodatabase was designed and realized. Its purpose is to offer a structure that can store and treat the pedological and agronomical data collected in the field. This tool allows to capture and analyse information in order to facilitate the characterization of viticultural soils and the exploitation of agronomical data. All the vineyard data can be summarized and interpreted with one database, coupled with a Geographic Information System (GIS). The realized database works with Access and Mapinfo connected together. The coupling of the database with a geographic information system allows to put together pedological, agronomical and microclimatic data and analyse them to deduce “terroirs” unities.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

K. PYTHOUD and R. CALOZ

Faculté de l’Environnement naturel, architectural et construit, Laboratoire de Systèmes d’information géographique (LASIG), Ecole polytechnique fédérale de Lausanne, CH – 1015 Lausanne

Contact the author

Keywords

Géorépertoire, base de données, terroirs, pédologie, agronomie, SIG
Geospatial data directory, database, terroirs, pedology, agronomy, GIS

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine.

Timing of leaf removal effects on vitis vinifera L. Cv. Grenache differed on two contrasting seasons

Warming trends over the winegrowing regions lead to an advance of grapevine phenology, diminution of yield and increased sugar content and must pH with a lower polyphenol content, especially anthocyanins. Canopy management practices are applied to control the source sink balance and improve the cluster microclimate to enhance berry composition. We hyphothesized that an early leaf removal might promote a delayed ripening through severe defoliation after fruitset; whereas, a late leaf removal at mid-ripening would reduce sugar accumulation.

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.