Terroir 1996 banner
IVES 9 IVES Conference Series 9 Establishment of a geodatabase ‘for the characterization of the viticultural “terroirs” of “canton de Vaud” (Switzerland)

Establishment of a geodatabase ‘for the characterization of the viticultural “terroirs” of “canton de Vaud” (Switzerland)

Abstract

[English version below]

La caractérisation objective des terroirs viticoles est nécessaire pour mieux comprendre les relations existantes entre les sols, la plante et la qualité de la production vinicole. Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un géorépertoire pédologique et agronomique a été conçu et réalisé. Son objectif est d’offrir une structure d’accueil et de traitement des données pédologiques et agronomiques récoltées sur le terrain. C’est un outil de saisie et d’exploitation, qui facilite la caractérisation des sols viticoles et la mise en valeur des données agronomiques. Couplé à un système d’information géographique, il permet d’en faire la synthèse et l’interprétation. Toutes les données relatives aux vignobles sont ainsi centralisées. La base de données réalisée fonctionne sur les logiciels couplés Access et Maplnfo. Ce couplage de la base- avec un système d’information géographique (SIG) permet de confronter les données pédologiques et agronomiques à celles du microclimat et d’en déduire finalement les unités terroirs recherchées.

The objective characterization of the viticultural “terroirs” is necessary in order to better understand the relationships between soils, plants and wine production quality. As part of a research on the viticultural “terroirs” of “canton de Vaud” – Switzerland, a pedological and agronomical geodatabase was designed and realized. Its purpose is to offer a structure that can store and treat the pedological and agronomical data collected in the field. This tool allows to capture and analyse information in order to facilitate the characterization of viticultural soils and the exploitation of agronomical data. All the vineyard data can be summarized and interpreted with one database, coupled with a Geographic Information System (GIS). The realized database works with Access and Mapinfo connected together. The coupling of the database with a geographic information system allows to put together pedological, agronomical and microclimatic data and analyse them to deduce “terroirs” unities.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

K. PYTHOUD and R. CALOZ

Faculté de l’Environnement naturel, architectural et construit, Laboratoire de Systèmes d’information géographique (LASIG), Ecole polytechnique fédérale de Lausanne, CH – 1015 Lausanne

Contact the author

Keywords

Géorépertoire, base de données, terroirs, pédologie, agronomie, SIG
Geospatial data directory, database, terroirs, pedology, agronomy, GIS

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

Novel biorefinery step for grape marc valorisation: polysaccharides extraction by subcritical water

The exploitation of food by-products has garnered significant attention over the past few decades, particularly within the framework of the European Green Deal.

Origin of unpleasant smelling sulphur compounds during wine fermentation

The wine sector is undergoing considerable transformation, particularly as a result of climate change and increasing consumer expectations for quality products, in a globalised and increasingly competitive market.

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and