Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caractéristiques physiques et agronomiques des principaux terroirs viticoles de l’Anjou (France). Conséquences pour la viticulture

Caractéristiques physiques et agronomiques des principaux terroirs viticoles de l’Anjou (France). Conséquences pour la viticulture

Abstract

Une étude conduite dans le cœur du vignoble A.O.C. angevin, sur une surface d’environ 30.000 ha, a permis de caractériser et cartographier finement (levé au 1/12.500), sur le plan des facteurs naturels, les différentes unités de terroir présentes. Pour cela, on a mis en œuvre une méthode basée sur le concept d’Unité Terroir de Base (U.T.B.). Elle utilise, à une même échelle cartographique, une clef géologique (stratigraphie et lithologie) et une clef agro-pédologique (modèle de terrain : roche, altération, altérite) pour identifier et zoner l’U.T.B. Une caractérisation agronomique de chaque U.T.B. a été faite sur le plan physique et chimique en mettant en œuvre les outils et mesures de la science du sol et de l’agronomie. Au plan viticole, une caractérisation de l’U.T.B. a également été conduite, grâce à l’utilisation d’algorithmes experts élaborés spécialement pour avoir une estimation chiffrée des principales variables de fonctionnement du système terroir / vigne : réservoir utilisable en eau pour la vigne, potentiel de précocité du terroir, potentiel de vigueur et rendement. L’effet terroir sur la vigne et le vin a été abordé par l’intermédiaire d’une enquête menée, au niveau de la parcelle, auprès de chaque vigneron de la zone étudiée.
Les résultats concernant les plus importantes Unités Terroir de Base de l’Anjou sont présentés. Ils montrent des différences souvent considérables entre U.T.B., en ce qui concerne les propriétés agro-viticoles. En conséquence, l’adaptation des porte-greffes, des pratiques agro-viticoles, de même que l’aptitude de l’U.T.B. à produire divers types de vins et le choix des cépages qui en résulte, sont discutés.

A study realized in the vineyard of Anjou, allowed to characterize and to map the different viticultural “terroirs”. A method based on the concept of the “Base Terroir Unit” (B.T.U) was utilized. It uses a geologic key (stratigraphical and lithological components) and a ground model known as: Roche, Altération, Altérite, to identify and to cartography the B.T.U. B.T.U. corresponds to an entity (a territory) that is sufficiently homogeneous with respect to functioning of the “terroir” / vine / wine system and that has a surface area sufficient for enhanced value through viticulture. An agronomic study was made for every T.B.U. from the point of view of physical and chemical factors. Viticultural potentialities were studied by using algorithms experts which allowed to estimate : soil water capacity, potential for early growth and potential of vigour, for each B.T.U. The results obtained were confirmed by means of the viticultural survey, amongst the wine growers.
Results show important differences between Base “Terroir” Units. As a consequence, the adaptation of the vineyard and the viticultural practices are discussed

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

R. Morlat*, P. Guilbault**, D. Rioux**, S. Cesbron**

*U.R.V.V. INRA. 42, rue Georges Morel. 49071 Angers. France
**Equipe Terroirs d’Anjou. Angers

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

Estudios de zonificación vitícola en España

La delimitación y caracterización de zonas vitícolas plantea en España problemas específicos no sólo por las características peculiares del territorio sino también por el tamaño

Use of uv light for suppression of grapevine diseases

Microbial pathogens of plant have evolved to sense, interpret, and use light to direct their development. One aspect of this evolved relationship is photolyase-mediated repair of UV-induced damage to pathogen DNA. Application of germicidal UV (UV-C) at night circumvents the blue light-driven repair of pathogen DNA and allows non-phytotoxic doses of UV-C to suppress a variety of pathogenic microbes and even certain arthropod pests without damage to vines or fruit. Lamps arrays have been designed specifically for the canopy architecture of grapevines and have been deployed on both tractor-drawn and robotic carriages for partial to near-complete suppression of powdery mildew (Erysiphe necator), sour rot (fungal, bacterial, and arthropod complex), and downy mildew (Plasmopara viticola).

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.