Terroir 1996 banner
IVES 9 IVES Conference Series 9 Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Abstract

The first South African wine was made by Jan van Riebeeck on the second of February 1659. His initial determination to produce wine at the Cape refreshment station was continued by other governors resulting in improvement and expansion of the embryo industry. As the colony opened up and new areas were discovered, so the wine industry developed to its present extent of over 100 000 ha (SAWIS, 1999). The initial expansion was based on ease of access and mainly focussed on fertile valleys, with rivers to provide irrigation in the more arid regions. Yield was often the overriding factor considered. However, when over-production became a problem in the early twentieth century, the focus was moved to quality. This eventually resulted in the introduction of the Wine of Origin legislation in 1973. South Africa is, therefore, a relatively young wine-producing country and has little tradition or experimental data to support delimitation of areas of origin. Such areas are demarcated on application by the producers. Natural factors, such as landscape, soil and macroclimatic patterns are used to determine boundaries, after which these demarcated areas are allowed to develop to express their specific wine style and character instead of proving their originality beforehand (Saayman, 1998). The identification and spatial characterisation of terrain units will act, therefore, as a scientific basis for the delimitation of areas for the production of characteristic wines of high quality. It will also provide an important basis for future development and management decisions and enable South Africa to remain competitive in an ever-expanding international wine market.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Victoria. Carey (1), V.B.F. Bonnardot (2)

(1) ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
(2) ARC Institute for Soil Climate and Water, Private Bag X5026, 7599 Stellenbosch, Republic of South Africa

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

ASSESSING THE ROLE OF 27 KNOWN BITTER COMPOUNDS IN COMMERCIAL WHITE WINES COMBINING LC-MS QUANTIFICATION AND SENSORY ANALYSIS

The balance between the different flavours of a wine largely determines its perception and appreciation by the consumers. In white wines, sweetness and sourness are usually the two poles balancing the taste properties. The bitter flavour, on the other hand, is frequently associated with a loss of equilibrium and all white wines (dry and sweet, young and aged) are affected.
Several bitter compounds are already well-described in wines.

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.

Influence of different strains of lab on quality of catarratto wine produced in sicily

AIM: Lactiplantibacillus plantarum and Oenococcus oeni species is worldwide used as starter for malolactic fermentation [1, 2].

Soil management with cover crops in irrigated vineyards: effects in vine microclimate (cv. Malbec) grown in a terroir of Agrelo (Luján de Cuyo)

L’objectif de cette recherche a été de déterminer les effets de l’enherbement dans le microclimat de la vigne. On a comparé cinq couvertures de cycle végétatif différent en ce qui concerne l’entretien du sol sans culture par application d’herbicides. L’étude a été developpée dans un vignoble cv. Malbec conduit en haute espalier, situé en a terroir á Agrelo, Luján de Cuyo, Mendoza, Argentine. On a déterminé des paramètres micro climatiques: