Terroir 1996 banner
IVES 9 IVES Conference Series 9 Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Abstract

The first South African wine was made by Jan van Riebeeck on the second of February 1659. His initial determination to produce wine at the Cape refreshment station was continued by other governors resulting in improvement and expansion of the embryo industry. As the colony opened up and new areas were discovered, so the wine industry developed to its present extent of over 100 000 ha (SAWIS, 1999). The initial expansion was based on ease of access and mainly focussed on fertile valleys, with rivers to provide irrigation in the more arid regions. Yield was often the overriding factor considered. However, when over-production became a problem in the early twentieth century, the focus was moved to quality. This eventually resulted in the introduction of the Wine of Origin legislation in 1973. South Africa is, therefore, a relatively young wine-producing country and has little tradition or experimental data to support delimitation of areas of origin. Such areas are demarcated on application by the producers. Natural factors, such as landscape, soil and macroclimatic patterns are used to determine boundaries, after which these demarcated areas are allowed to develop to express their specific wine style and character instead of proving their originality beforehand (Saayman, 1998). The identification and spatial characterisation of terrain units will act, therefore, as a scientific basis for the delimitation of areas for the production of characteristic wines of high quality. It will also provide an important basis for future development and management decisions and enable South Africa to remain competitive in an ever-expanding international wine market.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Victoria. Carey (1), V.B.F. Bonnardot (2)

(1) ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
(2) ARC Institute for Soil Climate and Water, Private Bag X5026, 7599 Stellenbosch, Republic of South Africa

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Climate change – variety change?

In Franconia, the northern part of Bavaria in Germany, climate change, visible in earlier bud break, advanced flowering and earlier grape maturity, leads to a decrease of traditionally cultivated early ripening aromatic white wine varieties as Mueller-Thurgau (30 % of the wine growing area) and Bacchus (12 %). With the predicted rise of temperature in all European wine regions the conditions for white wine grape varieties will decline and the grapes themselves will lose a part of their aromatic and fruity expression. Variety change towards the cultivation of later ripening white wine varieties is a very expensive and long-term process, and must be accompanied by special marketing efforts.

Agronomic behaviour of a native grapevine cultivar from the North of Spain (Vitis vinifera L.) in a mountain viticulture area and in a coastal zone

A work involving the finding, the description and the recovery of old grapevine varieties from the north and north east of Spain was begun in the CSIC in the year 1987.

Impact of high temperatures on phenolic profile of Babić grapes

Babić is a Croatian native grapevine variety grown in the Coastal region, mainly in the Šibenik and Primošten areas, famous for high quality red wines. The region is known for its warm Mediterranean climate and karst relief. Vineyards are found on the hillsides of varying slopes and exposition usually giving low yields of exceptional quality.

Development of spectral indices to monitoring non-destructive of ripeness for water stressed grapevine (Vitis vinifera L.) using contour map optimization

Accurate and non-destructive monitoring of grape ripening is essential for optimising harvest decisions, particularly under water stress conditions.

Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Sulphites are by far the most widely used additive in the wine industry. In relation to health, the interaction of sulphites with the gut microbiota has not been addressed so far. Following the consumption of wine and other sulphite-containing foods, the gastrointestinal tract and the microbiome are one of the first barriers that these compounds face in the human organism. In this study, we used a previously validated gastrointestinal digestion model (SIMGI®) [1,2] to evaluate the effect of intestinal digestion of wine sulphites on the gut microbiome.