Terroir 1996 banner
IVES 9 IVES Conference Series 9 Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Abstract

The first South African wine was made by Jan van Riebeeck on the second of February 1659. His initial determination to produce wine at the Cape refreshment station was continued by other governors resulting in improvement and expansion of the embryo industry. As the colony opened up and new areas were discovered, so the wine industry developed to its present extent of over 100 000 ha (SAWIS, 1999). The initial expansion was based on ease of access and mainly focussed on fertile valleys, with rivers to provide irrigation in the more arid regions. Yield was often the overriding factor considered. However, when over-production became a problem in the early twentieth century, the focus was moved to quality. This eventually resulted in the introduction of the Wine of Origin legislation in 1973. South Africa is, therefore, a relatively young wine-producing country and has little tradition or experimental data to support delimitation of areas of origin. Such areas are demarcated on application by the producers. Natural factors, such as landscape, soil and macroclimatic patterns are used to determine boundaries, after which these demarcated areas are allowed to develop to express their specific wine style and character instead of proving their originality beforehand (Saayman, 1998). The identification and spatial characterisation of terrain units will act, therefore, as a scientific basis for the delimitation of areas for the production of characteristic wines of high quality. It will also provide an important basis for future development and management decisions and enable South Africa to remain competitive in an ever-expanding international wine market.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Victoria. Carey (1), V.B.F. Bonnardot (2)

(1) ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
(2) ARC Institute for Soil Climate and Water, Private Bag X5026, 7599 Stellenbosch, Republic of South Africa

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Vineyard innovative tools based on the integration of earth observation services and in-field sensors (VitiGEOSS project)

Climate change is having an unprecedented impact on the wine industry, which is one of the major agricultural sectors around the world. Global warming, combined with the variation in rainfall patterns and the increase in frequency of extreme weather events, is significantly influencing vine physiology and exposing, more frequently, plants to severe biotic and abiotic stresses. This represents a challenge for viticulturists who need to take complex decisions to adjust vineyard management and achieve oenological goals.

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector.

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.

Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Using viticultural and enological techniques to increase aromatics in white wine is a prized yet challenging technique for commercial wine producers. Equally difficult are challenges encountered in hastening phenolic maturity and thereby increasing color intensity in red wines. The ability to alter organoleptic and visual properties of wines plays a decisive role in vintages in which grapes are not able to reach full maturity, which is seen increasingly more often as a result of climate change. A new, yeast-based product on the viticultural market may give the opportunity to increase sensory properties of finished wines. Manufacturer packaging claims these yeast derivatives intensify wine aromas of white grape varieties, as well as improve phenolic ripeness of red varieties, but the effects of this application have been little researched until now. The current study applied the yeast derivative, according to the manufacture’s instructions, to the leaves of both neutral and aromatic white wine varieties, as well as on structured red wine varieties. Chemical parameters and volatile aromatics were analyzed in grape musts and finished wines, and all wines were subjected to sensory analysis by a tasting panel. Collective results of all analyses showed that the application of the yeast derivative in the vineyard showed no effect across all varieties examined, and did not intensify white wine aromatics, nor improve phenolic ripeness and color intensity in red wine.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).