Terroir 1996 banner
IVES 9 IVES Conference Series 9 Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Abstract

The first South African wine was made by Jan van Riebeeck on the second of February 1659. His initial determination to produce wine at the Cape refreshment station was continued by other governors resulting in improvement and expansion of the embryo industry. As the colony opened up and new areas were discovered, so the wine industry developed to its present extent of over 100 000 ha (SAWIS, 1999). The initial expansion was based on ease of access and mainly focussed on fertile valleys, with rivers to provide irrigation in the more arid regions. Yield was often the overriding factor considered. However, when over-production became a problem in the early twentieth century, the focus was moved to quality. This eventually resulted in the introduction of the Wine of Origin legislation in 1973. South Africa is, therefore, a relatively young wine-producing country and has little tradition or experimental data to support delimitation of areas of origin. Such areas are demarcated on application by the producers. Natural factors, such as landscape, soil and macroclimatic patterns are used to determine boundaries, after which these demarcated areas are allowed to develop to express their specific wine style and character instead of proving their originality beforehand (Saayman, 1998). The identification and spatial characterisation of terrain units will act, therefore, as a scientific basis for the delimitation of areas for the production of characteristic wines of high quality. It will also provide an important basis for future development and management decisions and enable South Africa to remain competitive in an ever-expanding international wine market.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Victoria. Carey (1), V.B.F. Bonnardot (2)

(1) ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
(2) ARC Institute for Soil Climate and Water, Private Bag X5026, 7599 Stellenbosch, Republic of South Africa

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.

El Malvasía en la isla de la Palma

El tema que me corresponde tratar en esta mini conferencia sobre “Caracterización vitivinícola de las Malvasías en Canarias”, es por razones obvias la parte que atañe a la Isla de La Palma.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.