Terroir 1996 banner
IVES 9 IVES Conference Series 9 Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Spatial characterisation of terrain units in the Bottelaryberg-Simonsberg-Helderberg wine growing area (South Africa)

Abstract

The first South African wine was made by Jan van Riebeeck on the second of February 1659. His initial determination to produce wine at the Cape refreshment station was continued by other governors resulting in improvement and expansion of the embryo industry. As the colony opened up and new areas were discovered, so the wine industry developed to its present extent of over 100 000 ha (SAWIS, 1999). The initial expansion was based on ease of access and mainly focussed on fertile valleys, with rivers to provide irrigation in the more arid regions. Yield was often the overriding factor considered. However, when over-production became a problem in the early twentieth century, the focus was moved to quality. This eventually resulted in the introduction of the Wine of Origin legislation in 1973. South Africa is, therefore, a relatively young wine-producing country and has little tradition or experimental data to support delimitation of areas of origin. Such areas are demarcated on application by the producers. Natural factors, such as landscape, soil and macroclimatic patterns are used to determine boundaries, after which these demarcated areas are allowed to develop to express their specific wine style and character instead of proving their originality beforehand (Saayman, 1998). The identification and spatial characterisation of terrain units will act, therefore, as a scientific basis for the delimitation of areas for the production of characteristic wines of high quality. It will also provide an important basis for future development and management decisions and enable South Africa to remain competitive in an ever-expanding international wine market.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Victoria. Carey (1), V.B.F. Bonnardot (2)

(1) ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
(2) ARC Institute for Soil Climate and Water, Private Bag X5026, 7599 Stellenbosch, Republic of South Africa

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Effects of soil and climate on wine style in Stellenbosch: Sauvignon blanc

Une étude a été menée pendant neuf ans sur deux vignes non-irriguées de Sauvignon blanc commercialisés, plantées à différentes localités (A et B) dans le district de Stellenbosch. Deux parcelles expérimentales, situées sur deux formations géologiques différentes, ont été identifiées au sein de chaque vignoble. A chaque localité une des

Under-row low competitive herbaceous cover: A sustainable alternative to herbicide in vineyards

Weeds are undesirable plants in agroecosystems as they compete with the crop for essential resources such as light, water and nutrients, compromising the final yield and its quality.

DNA-Free genome editing confers disease resistance in grapevine

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.