Terroir 1996 banner
IVES 9 IVES Conference Series 9 Ripening characterization and modelling of Listan negro grape in Spain using a regression analysis

Ripening characterization and modelling of Listan negro grape in Spain using a regression analysis

Abstract

The professional winegrower usually selects the harvest date considering several elements, such as the vine stem and berry colour, the flavour, appearance and grain elasticity. Nowadays these elements have turned old fashioned.
Other professionals take into account the weather or even manpower availability, so it is mainly random which determines wine quality, as this depends on the raw material (quality) characteristics.
In order to palliate these practice posible negative effects, this work was based on the simple mathematical equation obtention which characterized the ripening of the most common grape variety at Tacoronte-Acentejo vineyard area to give both the winegrower and the oenologist a simple instrument to find out the best harvest date or to know the value of each traditional parameter according to the weather.
This work was done during the season from 1994 to 1998, in the period that starts with the verasion and ends with the ripening process. During this period samples were taken weekly. About ten grains by vine stem were taken from a whole of fifty, which were previously selected in vineyards grown in different parts of the wine region.
Once they were in the laboratory and after getting the sample ready to obtain the grape must, multiple physicochemical analyses were done, from which we stand out the following ones: one hundred berry weight, total sample weight, total volume, grape must yield, soluble solids, probable alcoholic rate, pH, total acidity, tartaric acid, malic acid, bound and free volatile compounds (free and potentially volatile monoterpene grape flavourings), sodium, potassium, copper, iron, colour indicator parameters, from which only three have been used in this experiment, the sugar content given as probable alcoholic rate, pH and total acidity analysed using the Standard Methods.
After the systematic observation of the ripening curve lines, similar evolutive tendencies are found in the three analysed parameters. This tendency has been studied by comparing the curved line behaviour to a straight line, using a computerized calculation programme obtaining like this the slope, the ordinate in the origin and the coefficient of correlation r2 in each case. The equations found are of the type y = a + bx, were “y” represents the value of the physicochemical studied parameter and “x” the day from the verasion. The ordinate in the origin “a” will be the studied parameter value at the moment in which the first sample was taken, that is to say, in the verasion. Slope “b” indicates the studied parameter daily increase.
We have also found regression lines which allow the harvest date calculation for the probable alcoholic rate determined with 0,12 alcoholic / day slope for 500 m high vineyards areas or even higher. We have also established a linear pH relationship with the days up to the harvest, which depends on the vineyard height and a similar regression for the acidity has also been found.
Thus, knowing each parameter prediction equation, the winegrower will be able to know his harvest conditions. He will also be able to know the time left to obtain each analytical parameter wished value and so, the best optimum harvest date with more than a 90 % reliability.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

García Fernández, M.J., González Mendoza, L.A., Pomar García, M.

Departamento de Ingeniería Química y Tecnología Farmacéutica
Facultad de Química. Universidad de La Laguna
Avda. Astrofísico Francisco Sánchez, s/n

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Among the many compounds in wine, condensed tannins play an important role in the organoleptic properties of the products; they are partly responsible for astringency, bitterness and also contribute to the color. This research work aims to study the oxidation state of these bio-heteropolymers which is an important lock in the analysis of processed products in order to better control their quality. Indeed, their identification remains at present a challenge because of the large heterogeneity of their degrees of polymerization (DP) based on 4 monomers (epicatechin, catechin, epigallocatechin, epicatechin-3-O-gallate) thus multiplying the number of oxidation products.

Characterization and application of silicon carbide (SiC) membranes to oenology

After fermentations, the crude wine is a turbid medium not accepted by the consumer therefore, it needs to be filtered

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.