Terroir 1996 banner
IVES 9 IVES Conference Series 9 Ripening characterization and modelling of Listan negro grape in Spain using a regression analysis

Ripening characterization and modelling of Listan negro grape in Spain using a regression analysis

Abstract

The professional winegrower usually selects the harvest date considering several elements, such as the vine stem and berry colour, the flavour, appearance and grain elasticity. Nowadays these elements have turned old fashioned.
Other professionals take into account the weather or even manpower availability, so it is mainly random which determines wine quality, as this depends on the raw material (quality) characteristics.
In order to palliate these practice posible negative effects, this work was based on the simple mathematical equation obtention which characterized the ripening of the most common grape variety at Tacoronte-Acentejo vineyard area to give both the winegrower and the oenologist a simple instrument to find out the best harvest date or to know the value of each traditional parameter according to the weather.
This work was done during the season from 1994 to 1998, in the period that starts with the verasion and ends with the ripening process. During this period samples were taken weekly. About ten grains by vine stem were taken from a whole of fifty, which were previously selected in vineyards grown in different parts of the wine region.
Once they were in the laboratory and after getting the sample ready to obtain the grape must, multiple physicochemical analyses were done, from which we stand out the following ones: one hundred berry weight, total sample weight, total volume, grape must yield, soluble solids, probable alcoholic rate, pH, total acidity, tartaric acid, malic acid, bound and free volatile compounds (free and potentially volatile monoterpene grape flavourings), sodium, potassium, copper, iron, colour indicator parameters, from which only three have been used in this experiment, the sugar content given as probable alcoholic rate, pH and total acidity analysed using the Standard Methods.
After the systematic observation of the ripening curve lines, similar evolutive tendencies are found in the three analysed parameters. This tendency has been studied by comparing the curved line behaviour to a straight line, using a computerized calculation programme obtaining like this the slope, the ordinate in the origin and the coefficient of correlation r2 in each case. The equations found are of the type y = a + bx, were “y” represents the value of the physicochemical studied parameter and “x” the day from the verasion. The ordinate in the origin “a” will be the studied parameter value at the moment in which the first sample was taken, that is to say, in the verasion. Slope “b” indicates the studied parameter daily increase.
We have also found regression lines which allow the harvest date calculation for the probable alcoholic rate determined with 0,12 alcoholic / day slope for 500 m high vineyards areas or even higher. We have also established a linear pH relationship with the days up to the harvest, which depends on the vineyard height and a similar regression for the acidity has also been found.
Thus, knowing each parameter prediction equation, the winegrower will be able to know his harvest conditions. He will also be able to know the time left to obtain each analytical parameter wished value and so, the best optimum harvest date with more than a 90 % reliability.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

García Fernández, M.J., González Mendoza, L.A., Pomar García, M.

Departamento de Ingeniería Química y Tecnología Farmacéutica
Facultad de Química. Universidad de La Laguna
Avda. Astrofísico Francisco Sánchez, s/n

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Characterizing the molecular basis of the differences in aromatic precursors found in commercial clones of Vitis vinifera cv. Tannat

Uruguay is known for the production of Tannat wines, which is a neutral variety from an aroma point of view, but capable of providing aromatic precursors that are of interest in the production of wines for ageing. The main aromatic precursors present are glycosidic compounds and carotenoids. The contribution of carotenoid degradation by-products such as norisoprenoids to wine aroma is fundamental, as they are associated with pleasant aroma descriptors and very low olfactory perception thresholds. Several factors have been shown to influence carotenoid concentrations in grapes, such as cultivar, climatic conditions, viticultural region, plant water status, exposure to sunlight and ripening stage.

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Proseccco is a famous italian Protected Designation of Origin (PDO) produced in two regions: Veneto e Friuli Venezia Giulia, however, the production is mainly concentrated in the province of Treviso. These territories are characterized by plains with some hilly areas and temperate climate. Its Production regulation provides a minimum utilization of 85% of Glera grapes, a local white grape variety, and up to a maximum of 15% of other local and international varieties. Prosecco second fermentation takes place, according to the Charmat method, in autoclaves.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.