Terroir 1996 banner
IVES 9 IVES Conference Series 9 Ripening characterization and modelling of Listan negro grape in Spain using a regression analysis

Ripening characterization and modelling of Listan negro grape in Spain using a regression analysis

Abstract

The professional winegrower usually selects the harvest date considering several elements, such as the vine stem and berry colour, the flavour, appearance and grain elasticity. Nowadays these elements have turned old fashioned.
Other professionals take into account the weather or even manpower availability, so it is mainly random which determines wine quality, as this depends on the raw material (quality) characteristics.
In order to palliate these practice posible negative effects, this work was based on the simple mathematical equation obtention which characterized the ripening of the most common grape variety at Tacoronte-Acentejo vineyard area to give both the winegrower and the oenologist a simple instrument to find out the best harvest date or to know the value of each traditional parameter according to the weather.
This work was done during the season from 1994 to 1998, in the period that starts with the verasion and ends with the ripening process. During this period samples were taken weekly. About ten grains by vine stem were taken from a whole of fifty, which were previously selected in vineyards grown in different parts of the wine region.
Once they were in the laboratory and after getting the sample ready to obtain the grape must, multiple physicochemical analyses were done, from which we stand out the following ones: one hundred berry weight, total sample weight, total volume, grape must yield, soluble solids, probable alcoholic rate, pH, total acidity, tartaric acid, malic acid, bound and free volatile compounds (free and potentially volatile monoterpene grape flavourings), sodium, potassium, copper, iron, colour indicator parameters, from which only three have been used in this experiment, the sugar content given as probable alcoholic rate, pH and total acidity analysed using the Standard Methods.
After the systematic observation of the ripening curve lines, similar evolutive tendencies are found in the three analysed parameters. This tendency has been studied by comparing the curved line behaviour to a straight line, using a computerized calculation programme obtaining like this the slope, the ordinate in the origin and the coefficient of correlation r2 in each case. The equations found are of the type y = a + bx, were “y” represents the value of the physicochemical studied parameter and “x” the day from the verasion. The ordinate in the origin “a” will be the studied parameter value at the moment in which the first sample was taken, that is to say, in the verasion. Slope “b” indicates the studied parameter daily increase.
We have also found regression lines which allow the harvest date calculation for the probable alcoholic rate determined with 0,12 alcoholic / day slope for 500 m high vineyards areas or even higher. We have also established a linear pH relationship with the days up to the harvest, which depends on the vineyard height and a similar regression for the acidity has also been found.
Thus, knowing each parameter prediction equation, the winegrower will be able to know his harvest conditions. He will also be able to know the time left to obtain each analytical parameter wished value and so, the best optimum harvest date with more than a 90 % reliability.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

García Fernández, M.J., González Mendoza, L.A., Pomar García, M.

Departamento de Ingeniería Química y Tecnología Farmacéutica
Facultad de Química. Universidad de La Laguna
Avda. Astrofísico Francisco Sánchez, s/n

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

DO MICROPLASTICS IN VINEYARD SOIL AFFECT THE BIOAVAILABILITY OF VINE NUTRITION?

Microplastics can alter physicochemical and biogeochemical processes in the soil, but whether these changes have further effects on soil fertility, and if so, whether these effects vary depending on the type of soil in the vineyard and the type of plastic used in the vineyard. Knowing what types of plastics are currently used in vineyards in Slovenian viticultural regions as strings to tie vines to the stake, the aim of our study was to assess the effects of microplastic particles from polypropylene (PP) and polyvinyl chloride (PVC) on the availability of macro (potassium (K), Potassium (K), calcium (Ca), magnesium (Mg) and phosphate (P)) and micronutrients (iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn)) in two vineyard soils contrasting in pH and mineralogy. For this purpose, a short-term soil incubation experiment (120 days) was carried out in which the soil samples were enriched with micro-PP and micro-PVC particles. After the incubation period, macro- and micronutrient availability were measured.

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998).

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.