Terroir 1996 banner
IVES 9 IVES Conference Series 9 Vine responses to two irrigation systems in the region of Vinhos Verdes

Vine responses to two irrigation systems in the region of Vinhos Verdes

Abstract

In this work we try to know the influence of two irrigation systems (Drip and Micro – jet ) with the same levels of water applied in an experimental vineyard in the region of Felgueiras.
At present we must say that there are not significant differences between the modalities in 1996, when we refer the yield and the pruning weight by vine. In 1998, we modified slightly the trial because there were troubles with some vines of one treatment. In 1999, we verified large significant differences among the modalities relatively to the pruning weight by vine but there were not significant differences at the yield/vine.
At the moment we do not have enough results about the relations quality of wine and amounts of water applied to the soil and their form of administration. So, we cannot conclude definitively about these two systems of irrigation and their levels of water applied. However, we can say that the treatment «Drip 100%Etm» did not show good results up to now.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Leme, P.C (1), Fernando, R.M.C. (2) and Seabra, L.S. (3)

(1) Técnico Superior da Divisão de Vitivinicultura e Fruticultura da D.R.A.E.D.M. Quinta de Sergude 4610 Felgueiras- Portugal
(2) Professor Auxiliar do Instituto Superior de Agronomia. Lisboa
(3) Bolseiro da Divisão de Vitivinicultura e Fruticultura da D.R.A.E.D.M. Quinta de Sergude 4610 Felgueiras- Portugal

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

Vine performance benchmarking of indigenous Cypriot grape varieties Xynisteri and Maratheftiko

Aim: The aims of this study were to (1) formulate a baseline understanding of the performance of the indigenous Cypriot white grape Xynisteri and the red grape Maratheftiko (Vitis vinifera L.), and (2) compare these varieties to Shiraz and Sauvignon blanc grown in a Cypriot vineyard.

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

Contaminants in Vitis vinifera L. products: levels and potential risks for human health

Vitis vinifera L. derivatives are susceptible to contamination by biological agents (e.g., bacteria, viruses, fungi), and chemical agents (e.g., heavy metals, persistent organic pollutants).