Terroir 1996 banner
IVES 9 IVES Conference Series 9 Vine responses to two irrigation systems in the region of Vinhos Verdes

Vine responses to two irrigation systems in the region of Vinhos Verdes

Abstract

In this work we try to know the influence of two irrigation systems (Drip and Micro – jet ) with the same levels of water applied in an experimental vineyard in the region of Felgueiras.
At present we must say that there are not significant differences between the modalities in 1996, when we refer the yield and the pruning weight by vine. In 1998, we modified slightly the trial because there were troubles with some vines of one treatment. In 1999, we verified large significant differences among the modalities relatively to the pruning weight by vine but there were not significant differences at the yield/vine.
At the moment we do not have enough results about the relations quality of wine and amounts of water applied to the soil and their form of administration. So, we cannot conclude definitively about these two systems of irrigation and their levels of water applied. However, we can say that the treatment «Drip 100%Etm» did not show good results up to now.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Leme, P.C (1), Fernando, R.M.C. (2) and Seabra, L.S. (3)

(1) Técnico Superior da Divisão de Vitivinicultura e Fruticultura da D.R.A.E.D.M. Quinta de Sergude 4610 Felgueiras- Portugal
(2) Professor Auxiliar do Instituto Superior de Agronomia. Lisboa
(3) Bolseiro da Divisão de Vitivinicultura e Fruticultura da D.R.A.E.D.M. Quinta de Sergude 4610 Felgueiras- Portugal

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Shift of Nitrogen Resources by biotic interaction in grapevine

Grape phylloxera (Daktulosphaira vitifoliae Fitch), a monophagous pest of the grapevine, induces nodosities on the roots through its sap-sucking activity.

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.

Fungal communites diversity and functional roles of different types of Botrytis cinerea infected grape berries on different growing sites

Botrytis cinerea, an Ascomycota pathogen with a broad host range, infects over 1200 plant species. Grapes infected by this pathogen, which subsequently develop a noble rot, remain in the vineyard for an extended period, thus being exposed to a diverse array of physical, chemical and biological factors, which give rise to a complex microbial community.

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.