Terroir 1996 banner
IVES 9 IVES Conference Series 9 Conduite en Lys: résultats pendant la formation du système avec le cépage Loureiro dans la région des “Vinhos Verdes”

Conduite en Lys: résultats pendant la formation du système avec le cépage Loureiro dans la région des “Vinhos Verdes”

Abstract

[English version below]

Dans la région des “Vinhos Verdes” les études sur les systèmes de conduite de la vigne sont très importantes et beaucoup de travaux ont été faits pendant les dernières années. Cet essai, avec la nouvelle conduite Lys, a été installé en 1996 dans la Station Vitivinicole Amândio Galhano (EVAG) située au nord-ouest du Portugal. Les résultats presentés se rapportent dans les deux premiéres années de formation du système Lys: 1998 et 1999.
On étudie huit clones du cépage Loureiro gréffés sur deux porte-greffes: 101-14 et 1103P. La densité de plantation est de 3.333 ceps par hectare (3,0 m x 1,0 m). Deux niveaux de charge ont été appliqués: C1 = 9.999 vs C2 = 19.998 bourgeons/ha en 1998 et C1 = 33.330 vs C2 = 46.662 bourgeons/ha en 1999.
En ce qui concerne la conduite des jeunes souches, il est très important le choix des unités permanentes (bras et épaules) pendant le développement végétatif, en sélectionnant les sarments les plus vigoureux et les plus bien placés.
Le plus bas niveau de charge en 1998 (C1 = 9.999) fut insuffisant en provoquant des sarments trop vigoureux et conséquemment un pourcentage élevé de sarments cassés, tandis que, le plus haut niveau de charge en 1999 (C2= 46.662) a provoqué des rendements significativement plus élevés mais accompagnés de pertes de qualité du moût. Le système Lys a revélé précocement un élevé potentiel de rendement et qualité (2-3 ans). D’ autre part, le porte-greffe 101-14 dans ce cépage et dans ce système a été au-dessus du porte-greffe 1103P soit au niveau du rendement soit au niveau de la qualité.

In the ‘Vinhos Verdes’ region the studies about vine training systems are very importants and many works were made in the last years. This research, with the new system Lys, was installated in 1996 at the ‘Amândio Galhano Viticulture Station’ in the north-west of Portugal. The results were carried out in the formation system period: 1998-1999.
We are studing eight clones of Loureiro grapevine grefted onto two rootstocks varieties: 101-14 and 1103P. The plants are arranged according to the rectangular plan of 3,0 m x 1,0 m (3.333 plants/ha) and the bud loads were: C1 = 9.999 vs C2 = 19.998 buds/ha in 1998 and C1 = 33.330 vs C2 = 46.662 buds/ha in 1999.
In the formation period, it is very important the choice of the permanent unities during the vegetal development, making a selection about the most vigorous and the best placed shoots.
The lowest bud load in 1998 (C1=9 999) was insufficient making a very vigorous shoots and consecutively many shoots broken by the wind; on the other hand, the highest bud load in 1999 (C2 = 46 662) showed significantly higher yields and lower must weights. Also, the rootstock variety 101-14 was better than 1 103P variety in the yield and quality levels. The training system Lys showed un early produce and quality potential.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

T. Mota (*), J. Garrido (*), M.J. Pereira (*), M. Lima-Ferreira (**), R. Castro (***)

(*) Comission de Viticulture de la Région des “Vinhos Verdes” (CVRVV). Porto
(**) Faculté de Sciences de l’Université du Porto (FCUP). Porto
(***) Institut Supérieur d’Agronomie (ISA). Lisbonne

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

An automated cooling system to mitigate thermal and radiative stresses in Pignoletto white grapes

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.