Terroir 1996 banner
IVES 9 IVES Conference Series 9 Conduite en Lys: résultats pendant la formation du système avec le cépage Loureiro dans la région des “Vinhos Verdes”

Conduite en Lys: résultats pendant la formation du système avec le cépage Loureiro dans la région des “Vinhos Verdes”

Abstract

[English version below]

Dans la région des “Vinhos Verdes” les études sur les systèmes de conduite de la vigne sont très importantes et beaucoup de travaux ont été faits pendant les dernières années. Cet essai, avec la nouvelle conduite Lys, a été installé en 1996 dans la Station Vitivinicole Amândio Galhano (EVAG) située au nord-ouest du Portugal. Les résultats presentés se rapportent dans les deux premiéres années de formation du système Lys: 1998 et 1999.
On étudie huit clones du cépage Loureiro gréffés sur deux porte-greffes: 101-14 et 1103P. La densité de plantation est de 3.333 ceps par hectare (3,0 m x 1,0 m). Deux niveaux de charge ont été appliqués: C1 = 9.999 vs C2 = 19.998 bourgeons/ha en 1998 et C1 = 33.330 vs C2 = 46.662 bourgeons/ha en 1999.
En ce qui concerne la conduite des jeunes souches, il est très important le choix des unités permanentes (bras et épaules) pendant le développement végétatif, en sélectionnant les sarments les plus vigoureux et les plus bien placés.
Le plus bas niveau de charge en 1998 (C1 = 9.999) fut insuffisant en provoquant des sarments trop vigoureux et conséquemment un pourcentage élevé de sarments cassés, tandis que, le plus haut niveau de charge en 1999 (C2= 46.662) a provoqué des rendements significativement plus élevés mais accompagnés de pertes de qualité du moût. Le système Lys a revélé précocement un élevé potentiel de rendement et qualité (2-3 ans). D’ autre part, le porte-greffe 101-14 dans ce cépage et dans ce système a été au-dessus du porte-greffe 1103P soit au niveau du rendement soit au niveau de la qualité.

In the ‘Vinhos Verdes’ region the studies about vine training systems are very importants and many works were made in the last years. This research, with the new system Lys, was installated in 1996 at the ‘Amândio Galhano Viticulture Station’ in the north-west of Portugal. The results were carried out in the formation system period: 1998-1999.
We are studing eight clones of Loureiro grapevine grefted onto two rootstocks varieties: 101-14 and 1103P. The plants are arranged according to the rectangular plan of 3,0 m x 1,0 m (3.333 plants/ha) and the bud loads were: C1 = 9.999 vs C2 = 19.998 buds/ha in 1998 and C1 = 33.330 vs C2 = 46.662 buds/ha in 1999.
In the formation period, it is very important the choice of the permanent unities during the vegetal development, making a selection about the most vigorous and the best placed shoots.
The lowest bud load in 1998 (C1=9 999) was insufficient making a very vigorous shoots and consecutively many shoots broken by the wind; on the other hand, the highest bud load in 1999 (C2 = 46 662) showed significantly higher yields and lower must weights. Also, the rootstock variety 101-14 was better than 1 103P variety in the yield and quality levels. The training system Lys showed un early produce and quality potential.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

T. Mota (*), J. Garrido (*), M.J. Pereira (*), M. Lima-Ferreira (**), R. Castro (***)

(*) Comission de Viticulture de la Région des “Vinhos Verdes” (CVRVV). Porto
(**) Faculté de Sciences de l’Université du Porto (FCUP). Porto
(***) Institut Supérieur d’Agronomie (ISA). Lisbonne

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Impact of organic inputs on soil biodiversity in vineyard systems. A monitoring approach during 20 years

Conventional vineyard practices have lead in many environmental disturbances as erosion, soil compaction, loss of organic matter and soil biodiversity, water contamination

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Pinot blanc: how terroir and pressing techniques impact on the must composition and wine quality

This study investigates how different pressing techniques impact on the sensory profile of Pinot Blanc wines sourced from different terroirs.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.