Terroir 1996 banner
IVES 9 IVES Conference Series 9 Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

Abstract

The “GuIturnio dei Colli Piacentini” V.Q.PR.D. results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of the Piacenza district, identified by the DM 31-07-93 art. 3.
The present work concerns the “zonation” of this area, constituted by 3 valleys Tidone (A), Nure (B) and Arda (C ). 11 homogeneous subzones (5 in A, 2 in B and 4 in C) have been identified studying the environmental and viticultural characteristics.
Some 1996 wines coming from each subzone were characterized using an unstructured card with sensory descriptors properly chosen for the Gutturnio wines. The sensory evaluation was carried out by a suitable trained panel of assessors. The work also reports a first classification of the same wines with the ‘Electronic nose ‘system.
This instrumental apparatus, based on an array of non-selective chemical sensors and a multicomponent data analysis, is able to recognize, distinguish and classify the odors.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

MAURO CATENA (1), LORENA CASTELLARl (2), MARIO UBIGLI (3), ANTONELLA BOSSO (3), MARIA CARLA CRAVERO (3), LORETTA PANERO (3), ALBINO LIBÈ (4), CORRADO Dl NATALE (5), ANTONELLA MACAGNANO (5), ROBERTO PAOLESSE (5), ARNALDO D’AMICO (5)

(1) C.R.P.V. – Filiera Vitivinicola, Via Tebano, 45 – 48018 Faenza (RA)
(2) C.A.T.E.V. S.r.l., Via Tebano, 45 – 48018 Faenza (RA)
(3) lstituto Sperimentale per l’Enologia, Via P. Micca, 35 – 14100 Asti
(4) Provincia di Piacenza – Dipartimento “Politiche di gestione del territorio e tutela
dell’ambiente” – Monitoraggio delle risorse territoriali ed ambientali – loc. Gariga – 29027 Podenzano (PC)
(5) Università di Roma, Tor Vergata – Gruppo Sensori e Microsistemi

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Development of breeding of PIWI varieties in the Czech Republic

Context and purpose of the study. The Czech Republic is one of the most important grape growers of PIWI varieties in the Europe, as the total area planted with PIWI varieties is almost 1000 ha.

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.

Study of Malvasia di Candia Aromatica shelf-life: effect of time and temperature on aroma compounds through an HS-SPME GCxGC-Ms approach

Young white wines should be consumed within a short time after bottling to avoid loss of their fresh, fruity attributes. Shelf-life of white wines can be extended if they are stored under suitable conditions of time and temperature prior to consumption.

Do high temperature extremes impact berry tannin composition?

Flavonoids, including flavonols, anthocyanins, and tannins, are
important contributors to grape and wine quality, and their biosynthesis is strongly influenced by bunch microclimate. While the synergistic effect of light and temperature has been intensively examined on flavonoids in relation to bunch exposure, studies targeting the sole effect of high temperature have mostly
focused on anthocyanins during the ripening period. With tannin biosynthesis starting around flowering, heatwaves occurring earlier in the grape growing season could be critical. Only a few papers report the impact of temperature on tannin synthesis and accumulation; to date, none have examined the effect of high temperature extremes which, in the context of climate change, relates to increases in heatwave intensity.