Terroir 1996 banner
IVES 9 IVES Conference Series 9 Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

Abstract

The “GuIturnio dei Colli Piacentini” V.Q.PR.D. results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of the Piacenza district, identified by the DM 31-07-93 art. 3.
The present work concerns the “zonation” of this area, constituted by 3 valleys Tidone (A), Nure (B) and Arda (C ). 11 homogeneous subzones (5 in A, 2 in B and 4 in C) have been identified studying the environmental and viticultural characteristics.
Some 1996 wines coming from each subzone were characterized using an unstructured card with sensory descriptors properly chosen for the Gutturnio wines. The sensory evaluation was carried out by a suitable trained panel of assessors. The work also reports a first classification of the same wines with the ‘Electronic nose ‘system.
This instrumental apparatus, based on an array of non-selective chemical sensors and a multicomponent data analysis, is able to recognize, distinguish and classify the odors.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

MAURO CATENA (1), LORENA CASTELLARl (2), MARIO UBIGLI (3), ANTONELLA BOSSO (3), MARIA CARLA CRAVERO (3), LORETTA PANERO (3), ALBINO LIBÈ (4), CORRADO Dl NATALE (5), ANTONELLA MACAGNANO (5), ROBERTO PAOLESSE (5), ARNALDO D’AMICO (5)

(1) C.R.P.V. – Filiera Vitivinicola, Via Tebano, 45 – 48018 Faenza (RA)
(2) C.A.T.E.V. S.r.l., Via Tebano, 45 – 48018 Faenza (RA)
(3) lstituto Sperimentale per l’Enologia, Via P. Micca, 35 – 14100 Asti
(4) Provincia di Piacenza – Dipartimento “Politiche di gestione del territorio e tutela
dell’ambiente” – Monitoraggio delle risorse territoriali ed ambientali – loc. Gariga – 29027 Podenzano (PC)
(5) Università di Roma, Tor Vergata – Gruppo Sensori e Microsistemi

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.

The chances for using non-saccharomyces wine yeasts for a sustainable winemaking

Climate changes and the trend towards organic and more sustainable winemaking highlighted the need to use biological methodologies. The reduction in the use of SO2, the need of the reduction of ethanol content of wines and the now need to reduce or eliminate chemical phytosanitary products, have prompted the search for alternative practices.

Using GIS to assess the terroir potential of an Oregon viticultural region

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face.

An overview of geological influences on South African vineyards

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.