Terroir 1996 banner
IVES 9 IVES Conference Series 9 Studio per la caratterizzazione delle produzioni vitivinicole dell’area del Barbera d’Asti DOC

Studio per la caratterizzazione delle produzioni vitivinicole dell’area del Barbera d’Asti DOC

Abstract

Il Barbera rappresenta sicuramente uno dei più importanti vitigni autoctoni del Piemonte occu­pando circa il 50% della superficie vitata regionale. Esso è ancora diffuso su un’area molto vasta, che si estende per oltre 200.000 ha, dando origine a diverse produzioni vinicole tutelate da denominazioni d’origine.
Fra queste il vino Barbera d’Asti mantiene il primato di produzione con i suoi 150.000 hl (dato stimato ’96), anche se la superficie, pur in un quadro generale di calo, è in sensibile diminuzio­ne.
Alla contrazione delle superfici degli ultimi anni i produttori hanno reagito con un progressivo innalzamento quai itativo della loro produzione che sta riscuotendo il gradimento del consuma­tore, con una riqualificazione del vino Barbera sui mercato nazionale ed intemazionale.
Si sta cosi ridisegnando la geografia del vigneto Barbera collocato preferibilmente sui versanti meglio esposti.
L’area del Barbera d’Asti, con una superficie iscritta a DOC di circa 9000 ha, è caratterizzata da una notevole variabilità degli ambienti che si esprime inevitabilmente nelle produzioni.
Alla luce di queste considerazioni la Regione Piemonte ha avviato nel 1997 uno studio di caratterizzazione sui Barbera d’Asti. Questo lavoro è stato inserito fra gli interventi di tipo strutturale che la Regione in applicazione del reg.CE 2081/93 objettivo 5b sta coordinando e finanziando sul territorio collinare allo scopo di orientare il settore vitivinicolo piemontese ad una riqualificazione delle sue produzioni enologiche.
L’objettivo è quello di verificare se esistono sostanziali differenze fra i vini Barbera d’Asti, prodotti nelle diverse zone dell’area a DOC, riconducibili a fattori oggettivi di carattere pedologico, climatico, viticolo ed enologico e di fornire elementi oggettivi per la definizione di sottozone.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

A. CELLINO, M. SOSTER

Regione Piemonte, Assessorato Agricoltura – Corso Stati Uniti 21 – 10128 Torino, ltaly

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

High-altitude vineyards under extreme conditions in the PIWI context of cultivation: economic and marketing evidence from an exploratory study in Northern Italy

Viticulture has spread to unexpected locations, such as high-altitude terrain. Among these, high-altitude viticulture has captured considerable attention, not only for the uniqueness of its products and landscapes but also because it offers an effective response to climate changes
The aim of this study is to analyse and compare wineries that used Piwi varieties (acronym for the German Pilzwiderstandfähig, i.e., cryptogame-resistant) at high altitudes (between 500 and 920 m a.s.l.) with the traditional non-mountainous viticulture model.

Biodiversidad de levaduras no-Saccharomyces aisladas de viñedos uruguayos: Lachancea thermotolerans y su potencial en la industria de bebidas fermentadas

Non-saccharomyces yeasts play a crucial role in fermentation, producing a variety of secondary metabolites and enzymes that contribute to aromatic and sensory complexity compared to saccharomyces yeasts. It is crucial to understand and control the dynamics of non-saccharomyces yeasts to produce distinctive and high-quality fermented beverages.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.