Terroir 1996 banner
IVES 9 IVES Conference Series 9 The Australian geographical indication process

The Australian geographical indication process

Abstract

The first white settlers arrived in Australia in 1788 and brought grape vine cuttings with them. As migration to Australia continued to grow during the XIX Century more and more vine cuttings, viticulturists and winemakers from Britain, France, Germany, ltaly, Switzerland and Yugoslavia founded their businesses. Firstly, in the State of New South Wales (N.S.W.) and then in the States of South Australia (S.A.), Victoria (VIC), Western Australia (W.A.), Tasma­nia (TAS) and Queensland (Q’land).
Phylloxera and the 1914-18 and 1939-45 wars and their aftermaths curtailed the growth of viti and viniculture, but since the second half of the XX Century growth bas been quite rapid and has continued during the 1990s.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

IAN G. MACKLEY

Deputy Chairman, Australian Wine and Brandy Corporation
Presiding Member, Geographical Indications Committee

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Croatia has rich grapevine genetic resources with more than 125 autochthonous varieties preserved. Coastal region of Croatia, Dalmatia, is well known for wine production based on autochthonous grapevine varieties. Nevertheless, only couple of these are widely cultivated and have greater economic importance. Grape seeds are sources of polyphenols which play an important role in organoleptic and nutritional value of grape and wine. Hence, the aim of this study was to evaluate the simple polyphenols from grape seeds in 20 rare autochthonous grapevine varieties.

Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

The use of different tank materials during red wine aging has become increasingly popular, but little is known about their impact on wine chemical and physical parameters.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

AI and blockchain synergy-driven reconstruction of nutritional health value chains in the wine industry

The increasing demand for healthier, more transparent, and sustainable wine products has prompted the need for innovative solutions to optimize the wine health value chain.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.