Terroir 1996 banner
IVES 9 IVES Conference Series 9 The Australian geographical indication process

The Australian geographical indication process

Abstract

The first white settlers arrived in Australia in 1788 and brought grape vine cuttings with them. As migration to Australia continued to grow during the XIX Century more and more vine cuttings, viticulturists and winemakers from Britain, France, Germany, ltaly, Switzerland and Yugoslavia founded their businesses. Firstly, in the State of New South Wales (N.S.W.) and then in the States of South Australia (S.A.), Victoria (VIC), Western Australia (W.A.), Tasma­nia (TAS) and Queensland (Q’land).
Phylloxera and the 1914-18 and 1939-45 wars and their aftermaths curtailed the growth of viti and viniculture, but since the second half of the XX Century growth bas been quite rapid and has continued during the 1990s.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

IAN G. MACKLEY

Deputy Chairman, Australian Wine and Brandy Corporation
Presiding Member, Geographical Indications Committee

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Towards microbiota-based disease management: analysis of grapevine microbiota in plots with contrasted levels of downy mildew infection

Vineyards harbor a myriad of microorganisms that interact with each other and with the grapevines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola that causes grapevine downy mildew. Others, such as plant growth promoting bacteria and disease biocontrol agents, have a positive influence on vine health. The present study aims to (1) investigate whether vine-based culture media increase the cultivability of the grapevine microbiota, in comparison to standard culture media and (2) identify and isolate bacterial taxa naturally present in grapevine leaves and significantly more abundant in plots showing low susceptibility to downy mildew.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains.

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques.