Terroir 1996 banner
IVES 9 IVES Conference Series 9 Valutazione comparativa di cloni di Pinot nero per la produzione di vini base spumante in alcuni ambienti del Piemonte

Valutazione comparativa di cloni di Pinot nero per la produzione di vini base spumante in alcuni ambienti del Piemonte

Abstract

[English version below]

Un vasto programma si riferisce alla verifica di 28 selezioni clonali di Pinot nero atte a vini base spumante. Gli impianti sono stati realizzati in diversi ambienti delle Langhe e del Monferrato nel periodo 1992-1996, in 57 vigneti diversi e su una superficie complessiva di circa 50 Ha. In ogni vigneto si è seguito uno schema sperimentale a blocchi randomizzati con densità di circa 4000 piante/Ha, sistema di allevamento assurgente in controspalliera e potatura a guyot. Nel presente lavoro si inizia a presentare i risultati relativi ai primi sette vigneti impiantati e ad 8 selezioni clonali di Pinot nero limitatamente ai parametri délia produzione nel triennio 1995-97.
Gli aspetti più significativi derivati dallo studio sono stati i seguenti:
– l’annata, intesa soprattutto come andamento climatico, ha esercitato un effetto molto importante sulla produzione di uva e sul peso del grappolo;
– Tra i vigneti considerati (siti) sono state riscontrate ampie differenze; quanto più un ambiente si è dimostrato favorevole, tanto più importanti sono state le produzioni delle diverse selezioni di Pinot nero e viceversa.
– Nell ‘ambito delle selezioni clonali si sono distiniti tre gruppi di cloni sulla base délia loro produttività: alta (cloni 292, 236, 375 e 459), media (clone 52) ed inferiore alla media (cloni 521 e 386)
– E verificata l’alternanza produttiva del Pinot nero negli anni e la sua elevata reattività ai siti ed alle condizioni climatico-ambientali.

A wide program has been build up in order to verify 28 Pinot noir clonal selections for high quality sparkling wines. 57 experimental vineyards have been planted over the period 1992-96 in diversified environments of Langhe and Monferrato for a total surface of about 50 Ha.
In every vineyard a randomized scheme was adopted with a density of about 4000 plants/ha, with low training system and Guyot pruning. The result related in this paper are about the yield of the first 7 vineyards and of 8 Pinot noir clonal selections, in the period 1995-1997. The most significant results are:
– The year, mainly as climatic conditions, proved an important effect on grape production and bunch weight
– Wide differences have been verified among the experimental vineyards (sites); as more an environment has been demonstrated favorable, so much the productions of the different Pinot noir’s selections have been important and vice versa.
– Three groups of clones have been found out on the base of the productivity: high (clones 292, 236, 375, 459), medium (clone 52) and lower of the average (clones 521 and 386).
– The Pinot noir yield variability over the years and his high reactivity to the climatic and environmental conditions have been verified.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

CORINO L., MALERBA G., SANDRI P.

lstituto Sperimentale perla Viticoltura , C.so Alfieri,177- 14100 Asti

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.

Biotic interactions: case of grapevine cultivars – the fungal pathogen Neofusicoccum parvum – biocontrol agents 

Grapevine is subject to multiple stresses, either biotic or abiotic, frequently in combination. These stresses may negatively impact the health status of plants and reduce yields. For biotic stress, grapevine is affected by numerous pest and diseases such as downy and powdery mildews, grey mold, black rot, grapevine fanleaf virus and trunk diseases (namely GTDs). The interaction between grapevine and pathogens is relatively complex and linked to various pathogenicity factors including cell-wall-degrading enzymes (especially CAZymes) and phytotoxic secondary metabolites, growth regulators, effectors proteins, and fungal viruses.

Aroma characterisation of mold resistant sparkling wines produced in a warm-temperate area

In recent years, resistant varieties have returned to the attention of the wine sector as a response to climate change and the reduction of pesticides in grapevine management, which is the main culprit of pesticide use in European agriculture. In this context, the production of sparkling wines could be strongly influenced due to its requirements for a particular balance between sugars and acidity, and the necessity of sound grapes to ensure wine quality. However, these parameters are not the only ones that define the suitability of a grape variety to produce sparkling wine.

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998).

Field evaluation of biofungicides to control powdery mildew and botrytis bunch rot of wine grapes in California

Grapevine powdery mildew caused by Erysiphe necator and Botrytis bunch rot caused by Botrytis cinerea are two of the most important fungal diseases in California grape production.