Terroir 1996 banner
IVES 9 IVES Conference Series 9 Territorio e vino tra immagine e comunicazione

Territorio e vino tra immagine e comunicazione

Abstract

Content of the article

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

LUIGI CREMONA

Touring Club ltaliano

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Report on the work carried out by the zoning group of the O.I.V.

La création officielle du groupe Experts Zonage Vitivinicole à l’O.I.V., qui s’inscrit dans la Commission Viticulture, est récente. Le Professeur Mario FREGONI en assure la présidence depuis 1998, assisté du vice-président et du secrétaire général Mario FALCETTI. Ils ont été confirmés dans leurs fonctions lors des sessions de mars 2001. Actuellement, le groupe d’experts Zonage Vitivinicole de l’O.I.V. se compose de 40 délégués, représentant 18 pays membres. La mise en place de ce groupe a tout d’abord été initiée par l’Instituto Agrario de San Michele (Italie) et l’Unité de Recherches Vigne et Vin du Centre INRA d’Angers (France). Une collaboration entre les chercheurs s’est installée très tôt, dès 1987.

The state of the climate

The climate has warmed over the past century or more bringing about changes in numerous aspects in both earth and human systems

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.