Terroir 1996 banner
IVES 9 IVES Conference Series 9 Comportement du cépage Mourvèdre dans l’aire d’Appellation d’Origine Contrôlée de Bandol

Comportement du cépage Mourvèdre dans l’aire d’Appellation d’Origine Contrôlée de Bandol

Abstract

L’Appellation d’Origine Contrôlée de Bandol couvre une superficie de 1365 ha dont 83 % sont plantés en vigne, la production annuelle étant de l’ordre de 40000 hl. Parmi les vins produits, on trouve essentiellement des rouges s’affïrmant avec le temps, mais aussi des rosés caractérisés par leur couleur pale, généralement orangée ; les blancs représentent une faible part de la production. Le cépage principal de cette A.O.C. est le Mouvèdre, d’origine espagnole, que l’on retrouve aussi en Provence et Languedoc. En fonction des exigences spécifiques de ce cépage, nous avons déterminé différents terroirs ; des parcelles caractéristiques de chacun d’eux ont été suivies par analyses physico-chimiques des sols et des sous-sols et par diagnostics foliaires durant plusieurs années. Ces analyses avaient pour but de pouvoir proposer une fertilisation adaptée à chaque terroir afin de favoriser l’obtention de raisins et de vins de qualité.

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

M. GARCIA (1), G. DE MONPEZAT (2), G. BRUN (1)

(1) I.N.P. ENSAT, 145 Avenue de Muret 31076 Toulouse cedex, France
(2) Centre d’Assistance Technique, chemin du Puits, 06330 Roquefort les pins, France

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.

In vitro tissue culture as a tool for Croatian grapevine germplasm management

In vitro culture makes it possible to carry out specific studies that would not be possible with whole plants grown in the field or in a greenhouse. Cryopreservation allows long-term preservation without metabolic changes in the plant material and cryotherapy can be efficient in virus elimination, which is a major scientific challenge.
The preculture media of cryopreservation protocols were evaluated on three Croatian grape varieties with different antioxidants (salicylic acid, ascorbic acid and glutathione). The highest growth in vitro was achieved on the medium with the addition of glutathione and the lowest with the addition of salicylic acid.

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

Grapes aminoacidic profile: impact of abiotic factors in a climate change scenario

Amino acids play a crucial role in determining grape and wine quality [1]. Recently, research has suggested their metabolism is key to plant abiotic stress tolerance [2]. Therefore, the study of amino acid accumulation in grape berries and its response to environmental factors is of both scientific and economic importance.