Anthropogenic intervention in shaping Terroir in a California Pinot noir vineyard

Abstract

In many vineyards optimal parcel size exceeds the geospatial complexity that exists in soils and topographic features that influence hydrological properties, sunlight interception and soil depth and texture (available water capacity). A premise of precision management is that such variation can be lessened, but the practices that would be used to achieve this have not been subjected to rigorous scientific evaluation. During 2004-2006 we examined spatial heterogeneity of soils and topographical features and related them to yield, industrial quality (soluble solids content, titratable acidity and pH), vine water status (predawn, ψPD, and midday, ψL, leaf water potential) and vigor (pruning weights), in an extremely complex hillside vineyard that had undergone terraforming as a means of increasing planted hectares and diminishing soils variation. Factor analysis was used to identify latent variables used in a multiple linear regression model with least squares estimation to identify correlations among soil and topographic factors, vine physiology and industrial quality parameters. Our results indicated that overall vine water status (ψPD and ψL) had the largest influence on within vineyard variation on an interannual basis, and that extreme spatial heterogeneity was evident in this vineyard in spite of terraforming efforts.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

David R. SMART (1), Alison BREAZEALE (1), Joshua VIERS (2), Dr. Richard PLANT (3)

(1) Department of Viticulture & Enology, University of California, One Shields Avenue, Davis CA 95616
(2) Department of Environmental Science & Policy, University of California, One Shields Avenue Davis CA 95616
(3) Department of Plant Sciences, University of California, One Shields Avenue, Davis CA 95616

Contact the author

Keywords

Complex slopes, ripening uniformity, precision viticulture, water potential, terraforming

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.