Terroir 1996 banner
IVES 9 IVES Conference Series 9 Optimisation de la fertilisation du Cot sur le Causse de l’Appellation d’Origine Contrôlée Cahors

Optimisation de la fertilisation du Cot sur le Causse de l’Appellation d’Origine Contrôlée Cahors

Abstract

L’aire d’Appellation d’Origine Contrôlée de Cahors (Lot) couvre une superficie de 21700 ha, répartis sur 45 communes, dont seulement 4300 sont plantés en vigne. Le cépage principal de cette A.O.C. est le Cot noir qui représente 70 % de l’encépagement, conférant ainsi leur typicité aux vins de cette région ; mais malgré cette importance, à notre connaissance, sa physiologie est restée assez peu étudiée.

Sur cette A.O.C. Cahors, traditionnellement on distingue le vignoble implanté sur le plateau calcaire : le Causse et celui de la vallée : terrasses alluviales du Lot et cônes d’éboulis. Nous avons choisi le Causse qui couvre 70 % de l’A.O.C., et correspond au quart environ de la superficie totale plantée en vigne. Sur différentes parcelles de ce terroir, nous avons réalisé un suivi sur plusieurs années par analyse de sols, de sous sols et par diagnostic foliaire. Les résultats d’analyse de limbes ont permis de déterminer, sur cette zone pédo-climatique homogène, des teneurs optimales en éléments minéraux pour ce cépage. Valeurs de référence permettant de pratiquer une fertilisation raisonnée qui est cependant à moduler en fonction des fluctuations climatiques interannuelles (Garcia et al. 1985).

DOI:

Publication date: March 25, 2022

Type: Poster

Issue: Terroir 1996

Authors

G. BRUN (1), M. GARCIA (1), F. DEDIEU (2), F. LAFFARGUE (3)

(1) Institut National Polytechnique. E.N.S.A.T.
145, Avenue de Muret, 31076 Toulouse cedex, France
(2) Faculté de Pharmacie
35, Chemin des Maraîchers, 31062 Toulouse cedex, France
(3) Maison du Vin de Cahors
B.P. 199, 46004 Cahors cedex, France

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

Social and environmental impacts of the adoption of a variety of table grape in the region of vale do São Francisco – Brazil

This study explores and analyzes the socio-environmental implications associated with the cultivation of the “brs-vitoria” table grape variety. Focusing on its adoption by farmers in the vale do submédio São Francisco region in Brazil, this study delves into the diverse impacts and changes brought about since its introduction, encompassing both the social and environmental dimensions of agricultural practices in the area. Embrapa, brazil’s federal agricultural research institution, encompasses a network of 43 thematic research centers spread across the nation.