Terroir 1996 banner
IVES 9 IVES Conference Series 9 Valorisation agroviticole de l’effet terroir par l’enherbement des sols

Valorisation agroviticole de l’effet terroir par l’enherbement des sols

Abstract

Les études développées par l’INRA et l’UV, à Angers, concerne les terroirs viticoles et leur gestion optimisée, tant du point de vue agroviticole qu’oenologique. Les travaux antérieurs (Morlat, 1989) ont permis de donner une dimension scientifique au concept de terroir viticole et ont démontré l’influence considérable de ce facteur de production sur la qualité et la typicité des vins (Asselin et al, 1992). Une méthodologie de caractérisation intégrée des terroirs, s’appuyant sur « l’Unité Naturelle Terroir de Base » (considérée comme la plus petite unité spatiale de territoire utilisable dans la pratique, et dans laquelle la réponse de la vigne est homogène), a été mise au point (Riou et al, 1995).

Les terroirs identifiés et cartographiés selon cette méthode occupent une surface qui varie de quelques hectares à plusieurs centaines d’hectares. Ils peuvent constituer la base d’un zonage pour une région viticole, à partir duquel on peut envisager d’une part, une utilisation rationnelle de l’effet terroir à l’échelle de l’exploitation viticole, et d’autre part une gestion parcellaire des itinéraires techniques.

DOI:

Publication date: March 22, 2022

Issue: Terroir 1996

Type : Poster

Authors

C. RIOU (1), R. MORLAT (2)

(1) ITV Angers
42 rue G. Morel 49070 Beaucouzé, France
(2) URVV-INRA Angers
B.P. 57, 49071 Beaucouzé, France

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

A new AI-based system for early and accurate vineyard yield forecasting

Vineyard yield forecasting is a key issue for vintage scheduling and optimization of winemaking operations. High errors in yield forecasting can be found in the wine industry, mainly due to the high spatial variability in vineyards, strong dependency on historical yield data, insufficient use of agroclimatic data and inadequate sampling methods

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized.

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

Atypical aging and hydric stress: insights on an exceptionally dry year

Atypical aging (ATA) is a white wine fault characterized by the appearance of notes of wet rag, acacia blossoms and naphthalene, along with the vanishing of varietal aromas. 2-aminoacetophenone (AAP) – a degradation compound of indole-3-acetic acid (IAA) – is regarded as the main sensorial and chemical marker responsible for this defect. About the origin of ATA, a stress reaction occurring in the vineyard has been looked as the leading cause of this defect. Agronomic, climatic and pedological factors are the main triggers and among them, drought stress seems to play a crucial role.[1]

Forcing vine regrowth in Vitis vinifera cv. Touriga nacional at Douro region

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...