Terroir 1996 banner
IVES 9 IVES Conference Series 9 Importance des propriétés optiques de la surface du sol sur le microclimat de la vigne. Répercussions de l’usage d’un revêtement de sol réfléchissant sur la composition des moûts et sur la qualité du vin

Importance des propriétés optiques de la surface du sol sur le microclimat de la vigne. Répercussions de l’usage d’un revêtement de sol réfléchissant sur la composition des moûts et sur la qualité du vin

Abstract

Cette recherche a eu pour but l’étude des effets d’un renforcement radiatif et thermique sur les zones inférieures de la canopée de la vigne (solarisation par des films ou des paillages réfléchissants installés sur le sol, sous les ceps), notamment l’étude de leurs conséquences sur la composition biochimique des moûts à la vendange et sur la qualité des vins.

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

J.P. Robin (1), F.X. Sauvage (1), J.C. Boulet (2), B. Suard (3), C. Flanzy (4)

(1) Institut Supérieur de la Vigne et du Vin, INRA-IPV, Unité de Biochimie Métabolique et Technologie 2 Place Viala, 34060 Montpellier Cedex 01, France
(2) Institut Supérieur de la Vigne et du Vin, INRA-IPV, Station Expérimentale de Pech-Rouge, 11430 Gruissan, France
(3) INRA, Laboratoire d’Etude des Plantes sous Stress Environnementaux
2 Place Viala, 34060 Montpellier Cedex 01, France
(4) ENSA-IPV, UFR de Technologie-Oenologie
2 Place Viala, 34060 Montpellier Cedex 01, Fran

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Effect of topography on vine evapotranspiration and water status in hillside vineyards

Many winegrape regions have hillside vineyards, where vine water use is affected by vine age, density and health, canopy size, row orientation, irrigation practices