Terroir 1996 banner
IVES 9 IVES Conference Series 9 Des enjeux individuels à l’action collective

Des enjeux individuels à l’action collective

Abstract

Avec la Fédération des Syndicats Viticoles de l’Anjou et le Syndicat Viticole Angevin pour la vente directe à la Propriété, l’Ecole Supérieure d’Agriculture d’Angers a été amenée à réaliser, en 1995, une enquête auprès des viticulteurs du Maine et Loire, dans la perspective d’un regroupement de l’offre d’une partie des vins destinés à la vente directe (Huet, 1995). Cette activité commerciale est confrontée à l’effet pervers suivant : tous les viticulteurs ne peuvent écouler la totalité de leur production en vente directe si bien qu’ils sont amenés à brader leurs invendus auprès du négoce. Cette part d’invendus de la vente directe n’est pas mise en marché au meilleur prix, elle tire donc à la baisse l’ensemble des prix du bassin de production. La solution envisagée par les responsables professionnels angevins concerne le regroupement de l’offre. Ainsi l’idée est-elle lancée, mais qu’est-il possible de faire, avec qui, et comment ?

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

F. SARRAZIN

Sociologue, Enseignant – Chercheur, Ecole Supérieure d’Agriculture
55 rue Rabelais – B.P. 748 49007 ANGERS cedex 01

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come. Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

The contribution of sulfur compounds to wine aroma has been studied for several years, as their role can be either positive, contributing to the fruitiness and typicity of some white wines like Sauvignon blanc, or negative when related to off-flavours caused by H2S.

Twenty-two shades of grey – An analysis of alcohol regulations in the Arab world

This article compares alcohol regulations across 22 Arab League member countries.