Terroir 1996 banner
IVES 9 IVES Conference Series 9 Des enjeux individuels à l’action collective

Des enjeux individuels à l’action collective

Abstract

Avec la Fédération des Syndicats Viticoles de l’Anjou et le Syndicat Viticole Angevin pour la vente directe à la Propriété, l’Ecole Supérieure d’Agriculture d’Angers a été amenée à réaliser, en 1995, une enquête auprès des viticulteurs du Maine et Loire, dans la perspective d’un regroupement de l’offre d’une partie des vins destinés à la vente directe (Huet, 1995). Cette activité commerciale est confrontée à l’effet pervers suivant : tous les viticulteurs ne peuvent écouler la totalité de leur production en vente directe si bien qu’ils sont amenés à brader leurs invendus auprès du négoce. Cette part d’invendus de la vente directe n’est pas mise en marché au meilleur prix, elle tire donc à la baisse l’ensemble des prix du bassin de production. La solution envisagée par les responsables professionnels angevins concerne le regroupement de l’offre. Ainsi l’idée est-elle lancée, mais qu’est-il possible de faire, avec qui, et comment ?

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

F. SARRAZIN

Sociologue, Enseignant – Chercheur, Ecole Supérieure d’Agriculture
55 rue Rabelais – B.P. 748 49007 ANGERS cedex 01

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

The effects of perennial cover crop management on soil temperature and vine water status

The implications of perennial cover crop management on vine vigor and yield have been well documented. However, whereas multiple studies show that cover crop management affects grapevine dry matter production, water, and nutrient status, the specific effects of a new hybrid perennial cover crop on soil temperature and its relationship to vine water status in vineyards has not been explored. This study will compare 3 different perennial cover crop combinations and tillage practices with a no-till seeding of a new hybrid perennial, Poa bulbosa (Pb).

Technological possibilities of grape marc cell walls as wine fining agent. Effect on wine phenolic composition

Fining is a technique that is used to remove unwanted wine components that affect clarification, astringency, color, bitterness, and aroma. Fining involves the addition of adsorptive or reactive material in order to reduce or eliminate the presence of certain less desirable wine components and to ensure that a wine remains in a particular stable state for a given period of time Recently concerns have been raised about the addition of animal proteins, such as gelatin, to wine due to the disease known as bovine spongiform encephalopathy (Mad Cow disease). Although the origin of gelatins has been moved to porcine, winemakers are asking for substitute products with properties and application protocols similar to the traditional animal-derived ones, making the use of plant-derived proteins in fining a practically viable possibility. As a consequence, various fining agents derived from plants have been proposed, including proteins from cereals, legumes, and potato.

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.