Terroir 1996 banner
IVES 9 IVES Conference Series 9 Des enjeux individuels à l’action collective

Des enjeux individuels à l’action collective

Abstract

Avec la Fédération des Syndicats Viticoles de l’Anjou et le Syndicat Viticole Angevin pour la vente directe à la Propriété, l’Ecole Supérieure d’Agriculture d’Angers a été amenée à réaliser, en 1995, une enquête auprès des viticulteurs du Maine et Loire, dans la perspective d’un regroupement de l’offre d’une partie des vins destinés à la vente directe (Huet, 1995). Cette activité commerciale est confrontée à l’effet pervers suivant : tous les viticulteurs ne peuvent écouler la totalité de leur production en vente directe si bien qu’ils sont amenés à brader leurs invendus auprès du négoce. Cette part d’invendus de la vente directe n’est pas mise en marché au meilleur prix, elle tire donc à la baisse l’ensemble des prix du bassin de production. La solution envisagée par les responsables professionnels angevins concerne le regroupement de l’offre. Ainsi l’idée est-elle lancée, mais qu’est-il possible de faire, avec qui, et comment ?

DOI:

Publication date: March 25, 2022

Issue: Terroir 1996

Type : Poster

Authors

F. SARRAZIN

Sociologue, Enseignant – Chercheur, Ecole Supérieure d’Agriculture
55 rue Rabelais – B.P. 748 49007 ANGERS cedex 01

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

Modulating the phyllosphere microbiome in grapevine using plant biostimulants to enhance protection against biotic and abiotic stress

Context and purpose of the study. Climate change scenarios predict ever increasing frequency of drought events and coupled with disease outbreaks poses survival risks to perennial fruit crops such as grapevine.

Factors influencing cover crop water competition in vineyards and implications for future drought adaptation

Vineyard water management in Australia is often associated with irrigation in warm and hot climates, but in cooler regions the larger share of the seasonal water demand is met by rainfall.

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.