terclim by ICS banner
IVES 9 IVES Conference Series 9 Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Abstract

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

DOI:

Publication date: May 4, 2022

Issue: Terclim 2022

Type: Article

Authors

Alena Wilson, Silvia Guidoni and Vittorino Novello

Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy

Contact the author

Keywords

 Nebbiolo, vineyard, terroir zoning, diurnal range, kriging

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Using remote sensing to quantify the temporal and spatial effects of extreme weather events in vineyards

The increasing frequency of extreme weather events (EWE) represents a severe threat to viticulture.

Observatoire du Grenache en Vallée du Rhône: incidence du terroir sur la diversité analytique et sensorielle des vins

Rhone Valley A.O.C. Vineyards cover more than 70 000 hectares, of wich more than 40 000 plantedwith Grenache N. The Grenache observatory was created in 1995.

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].