terclim by ICS banner
IVES 9 IVES Conference Series 9 Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Geospatial trends of bioclimatic indexes in the topographically complex region of Barolo DOCG

Abstract

Barolo DOCG is an economically important wine producing region in Northwest Italy. It is a small region of approximately 70 km2 gross area. The topography is very complex with steep sloped hills ranging in elevation from below 200 m to 550 m. Barolo DOCG wine is made exclusively from the Nebbiolo grape. Bioclimatic indexes are often used in viticulture to gain a better understanding of broader climate trends which can be compared temporally and geographically. These indexes are also used for identifying potential phenological timing, growing region suitability, and potential risks associated with expected climatic changes. Understanding how topography influences bioclimatic indexes can help with understanding of mesoscale climate behaviour leading to improved decision making and risk management strategies. The average monthly maximum and minimum temperatures, the Cool Night Index, the Huglin Index, and the monthly diurnal range (from July to October) were calculated using data from 45 weather stations within a 40 km radius of the Barolo DOCG growing area between the years 1996 and 2019. Linear and multiple regression models were developed using independent variables (elevation, aspect, slope) extracted from a digital elevation model to identify significant relationships. Bioclimatic indexes were then kriged with external drift using independent variables that showed significant relationships with the bioclimatic index using a 100 m resolution grid. The maximum monthly temperatures and the Huglin Index showed consistent significant negative relationships with elevation in all years. The minimum monthly temperatures showed no relationship with elevation but in some months a small but significant relationship was observed with aspect. Due to the lack of a relationship between minimum monthly temperatures and elevation compared to the significant relationship between maximum monthly temperatures and elevation, monthly diurnal range had a negative relationship with elevation.

DOI:

Publication date: May 4, 2022

Issue: Terclim 2022

Type: Article

Authors

Alena Wilson, Silvia Guidoni and Vittorino Novello

Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy

Contact the author

Keywords

 Nebbiolo, vineyard, terroir zoning, diurnal range, kriging

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Aroma quality of fortified wines from different Moscato cv. Cultivated in sicily

AIM: Vitis vinifera L. cv. Moscato includes different varieties, mainly white grapes with a medium-sized berry, spheroidal or slightly flattened in shape, yellow greenish color which becomes golden yellow or amber when exposed to the sun. Moscato varieties are mainly used for the production of sweet aromatic wines

Wine tourism as a catalyst for sustainable competitive advantage: unraveling the role of winery image and reputation

This study examines the impact of wine tourism development on the sustainable competitive advantage of Spanish wineries, while also exploring the mediating roles of winery image and winery reputation in this relationship.

Effect of late pruning on yield and wine composition in monastrell wines

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers

Wine shaking during transportation: influence on the analytical and sensory parameters of wine

According to OIV reports, annual world wine consumption fluctuated around 240-245 mln hL over the past decade. The general market globalization has led to the situation when almost half of the consumed wine is exported to other countries. Of this volume, more than 60 mln hL are bottled still and sparkling wines.

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest.